K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2021


     

T=a3a2+2b2+c2+b3b2+2c2+a2+c3c2+2a2+b2T=aa2+c2+2(a2+b2)+bb2+a2+2(b2+c2)+cc2+b2+2(c2+a2)≤a2ac+4ab+b2ab+4bc+c2bc+4ca=12(1c+2b+1a+2c+1b+2c)≤12(1b+b+c+1a+c+c+1c+c+b)≤118(1a+1a+1b+1b+1b+1c+1c+1c+1a)=16(1a+1b+1c)=16(ab+bc+caabc)≤a2+b2+c26abc=3abc6abc=12T=a3a2+2b2+c2+b3b2+2c2+a2+c3c2+2a2+b2T=aa2+c2+2(a2+b2)+bb2+a2+2(b2+c2)+cc2+b2+2(c2+a2)≤a2ac+4ab+b2ab+4bc+c2bc+4ca=12(1c+2b+1a+2c+1b+2c)≤12(1b+b+c+1a+c+c+1c+c+b)≤118(1a+1a+1b+1b+1b+1c+1c+1c+1a)=16(1a+1b+1c)=16(ab+bc+caabc)≤a2+b2+c26abc=3abc6abc=12

Dấu bằng xảy ra khi và chỉ khi {a2+b2+c2=3abca=b=c⇔3a2=3a3⇔a=1⇒a=b=c=1

Giả sử 4n3-5n-1 là SCP

Có 4n3-5n-1=(n+1)(4n2-4n-1)

Gọi (n+1; 4n2-4n-1)=d   ( d thuộc N)

=> n+1 chia hết cho d và 4n2-4n-1 chia hết cho d

 Mà 4n2-4n-1 =(n+1)(4n-8) + 7 

=> 7 chia hết cho d

=> d = 7 hoặc 1

Có n(n+1) +7 không chia hết cho 7 => n(n+1) không chia hết cho 7 => n+1 không chia hết cho 7 => d khác 7

=> d=1

=> (n+1; 4n2-4n-1) =1

mả 4n3-5n-1=(n+1)(4n2-4n-1) là SCP

=> n+1 và 4n2-4n-1 đồng thời là SCP

=> 4n+4 và 4n2-4n-1 là SCP

=> 4n +4 + 4n2-4n-1 = 4n^2 +3 là SCP

mà 4n2+3 chia 4 dư 3 

=> Vô lý

=> Giả sử sai

=> đccm

26 tháng 7

sai r bạn ơi

 

 

 

11 tháng 11 2021

a: \(\Leftrightarrow2n+1\in\left\{1;3;9\right\}\)

hay \(n\in\left\{0;1;4\right\}\)

11 tháng 11 2021

\(a,\Leftrightarrow10n+14⋮2n+1\\ \Leftrightarrow5\left(2n+1\right)+9⋮2n+1\\ \Leftrightarrow2n+1\inƯ\left(9\right)=\left\{1;3;9\right\}\\ \Leftrightarrow n\in\left\{0;1;4\right\}\)

6 tháng 10 2018

a) Xét 3 t/h của x :

+) Xét n là số lẻ => ( 5n + 7 ) là số chẵn => ( 5n + 7 ) ( 4n + 6 ) chia hết cho 2

+) Xét n là số chẵn => ( 4n + 6 ) là số chẵn => ( 5n + 7 ) ( 4n + 6 ) chia hết cho 2

+) Xét n bằng 0 => ( 4n + 6 ) là số chẵn => ( 5n + 7 ) ( 4n + 6 ) chia hết cho 2

Vậy ta có đpcm

6 tháng 10 2018

b) C.m tương tự câu a :

+) Với n lẻ thì ko có thừa số nào là số chẵn => ko chia hết cho 2

+) Với n chẵn thì cx ko có thừa số nào là số chẵn => ko chia hết cho 2

+) Với n = 0 thì cx ko có thừa số nào là số chẵn => ko chia hết cho 2

Vậy ta có đpcm

P.s : chỉ cần mỗi t/h đầu là có thể đpcm rồi, nhưng để đầy đủ thì cứ làm cả ra nha