K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2021

\(\dfrac{1}{\sqrt{a}}< \sqrt{a+1}-\sqrt{a-1}\) <=> \(\left(\dfrac{1}{\sqrt{a}}\right)^2< \left(\sqrt{a+1}-\sqrt{a-1}\right)^2\)

<=> \(\dfrac{1}{a}< \left(a+1\right)+\left(a-1\right)-2\sqrt{a^2-1}\)

<=> \(2\sqrt{a^2-1}< 2a-\dfrac{1}{a}\)

<=> \(4\left(a^2-1\right)< 2\left(2a-\dfrac{1}{a}\right)^2\) <=> \(\dfrac{1}{a^2}>0\)

Vậy \(\dfrac{1}{\sqrt{a}}< \sqrt{a+1}-\sqrt{a-1}\) với mọi a ≥ 0=> đpcm.

 

28 tháng 10 2021

\(=\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-1}{1}\)

\(=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

4 tháng 7 2023

a, \(VT=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}.\left(\sqrt{a}-\sqrt{b}\right)=a-b=VP\) đpcm

b,\(VT=1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}-\dfrac{a^2-a}{a-1}=1-\sqrt{a}+\sqrt{a}-a=1-a=VP\) đpcm

4 tháng 7 2023

loading...  

26 tháng 4 2022

-Mình thử trình bày cách làm của mình nhé, bạn xem thử có gì sai sót không hoặc chỗ nào bạn không hiểu thì hỏi mình nhé.

26 tháng 4 2022

-Thôi, mình chịu rồi. Mình dùng tất cả các BĐT như Caushy, Schwarz, Caushy 3 số... nhưng không ra.

28 tháng 10 2021

a: \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)

\(=\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)

\(=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

13 tháng 11 2021

Câu b bạn sửa lại đề

\(a,VT=\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\\ =\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x=VP\\ b,VT=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}+\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\\ =\sqrt{a}-\sqrt{b}+\sqrt{a}+\sqrt{b}=2\sqrt{a}=VP\)

13 tháng 11 2021

a: \(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)

21 tháng 5 2018

\(VT=\left(\dfrac{\sqrt{a}}{1-\sqrt{a}}+\dfrac{\sqrt{a}}{1+\sqrt{a}}\right):\dfrac{2\sqrt{a}}{a-1}\)

\(=\left(\dfrac{-\sqrt{a}\left(\sqrt{a}+1\right)+\sqrt{a}\left(\sqrt{a}-1\right)}{a-1}\right).\dfrac{a-1}{2\sqrt{a}}\)

\(=\left(\dfrac{-a-\sqrt{a}+a-\sqrt{a}}{a-1}\right).\dfrac{a-1}{2\sqrt{a}}=\dfrac{-2\sqrt{a}}{a-1}.\dfrac{a-1}{2\sqrt{a}}=-1=VP\)

12 tháng 3 2019

C/m: \(\dfrac{1}{\sqrt{k}+\sqrt{k+1}}=\dfrac{\sqrt{k+1}-\sqrt{k}}{k+1-k}=\sqrt{k+1}-\sqrt{k}\)\(\left(k\ge1,k\in\text{ℕ}\right)\)

Có: \(\dfrac{1}{\sqrt{k-1}+\sqrt{k}}>\dfrac{1}{\sqrt{k}+\sqrt{k+1}}\)

\(\Rightarrow\dfrac{2}{\sqrt{k-1}+\sqrt{k}}>\dfrac{1}{\sqrt{k}+\sqrt{k+1}}+\dfrac{1}{\sqrt{k-1}+\sqrt{k}}\)\(=\sqrt{k}-\sqrt{k-1}+\sqrt{k+1}-\sqrt{k}=\sqrt{k+1}-\sqrt{k-1}\)

\(\Rightarrow2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{79}+\sqrt{80}}\right)>\sqrt{3}-\sqrt{1}+\sqrt{5}-\sqrt{3}+...+\sqrt{81}=9-1=8\)

\(\Rightarrow\dfrac{1}{\sqrt{1}+\sqrt{2}}+...+\dfrac{1}{\sqrt{79}+\sqrt{80}}>4\)(đpcm).

NV
12 tháng 3 2019

\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)

Xét:

\(B=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{80}+\sqrt{81}}=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{81}-\sqrt{80}\)

\(\Rightarrow B=\sqrt{81}-\sqrt{1}=8\)

Mặt khác, do \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}< \frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{1}+\sqrt{2}}=\frac{2}{\sqrt{1}+\sqrt{2}}\)

Tương tự: \(\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}< \frac{2}{\sqrt{3}+\sqrt{4}}\) ....

\(\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}< \frac{2}{\sqrt{79}+\sqrt{80}}\)

Cộng vế với vế ta được: \(2A>B=8\Rightarrow A>4\)

26 tháng 10 2017

Biến đổi vế trái ta có:

\(\left(\dfrac{1}{\sqrt{a}\left(\sqrt{a}+1\right)}-\dfrac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}+1\right)}\right).\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{4}}\)

\(=\dfrac{1-\sqrt{a}}{\sqrt{a}\left(\sqrt{a}+1\right)}.\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{4}}\)

\(=\dfrac{1-\sqrt{a}}{\sqrt{a}}.\dfrac{\sqrt{a}+1}{\sqrt{4}}\)

\(=\dfrac{a-1}{\sqrt{4a}}\)

26 tháng 10 2017

đề này sai ko nhỉ

30 tháng 12 2022

1: \(\Leftrightarrow a\sqrt{a}+b\sqrt{b}>=\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)

=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b-\sqrt{ab}\right)>=0\)

=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2>=0\)(luôn đúng)