K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)

nên \(\dfrac{5a}{3b}=\dfrac{5c}{3d}\)

hay \(\dfrac{5a}{5c}=\dfrac{3b}{3d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)

\(\Leftrightarrow\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)

hay \(\dfrac{5a+3n}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)(đpcm)

 

8 tháng 8 2023

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk,c=dk\)

a) \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2}{d^2}\)\(=\dfrac{\dfrac{a}{k}.b}{\dfrac{c}{k}.d}=\dfrac{ab}{cd}=VT\)

Vậy...

b) \(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{5k+3}{5k-3}\)

\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{5k+3}{5k-3}\)

Suy ra \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)

c) \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7\left(bk\right)^2+3\left(bk\right).b}{11\left(bk\right)^2-8b^2}\)\(=\dfrac{7k^2+3k}{11k^2-8}\)

\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7\left(dk\right)^2+3\left(dk\right).d}{11\left(dk\right)^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\)

Suy ra \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)

8 tháng 8 2023

a) Có: \(\dfrac{a}{b}=\dfrac{c}{d}\)

=> \(ad=bc\)

=> \(\dfrac{a}{c}=\dfrac{b}{d}\) => \(\left(\dfrac{a}{c}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{ab}{cd}=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\)

(theo tính chất dãy tỉ số bằng nhau)

=> (đpcm)

b) Có: \(\dfrac{a}{b}=\dfrac{c}{d}\) => \(\dfrac{a}{c}=\dfrac{b}{d}\)

=> \(\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)(theo tính chất dãy tỉ số bằng nhau)

=> \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\) (đpcm)

c) Có: \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

=> \(\dfrac{a^2}{c^2}=\dfrac{ab}{cd}=\dfrac{b^2}{d^2}\)          => \(\dfrac{7a^2}{7c^2}=\dfrac{3ab}{3cd}=\dfrac{11a^2}{11c^2}=\dfrac{8b^2}{8d^2}\)

=> \(\dfrac{7a^2+3ab}{7c^2+3cd}=\dfrac{11a^2-8b^2}{11c^2-8d^2}\) (theo tính chất dãy tỉ số bằng nhau)

=> \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)(đpcm)

#Ayumu

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{5k+3}{5k-3}\)

\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{5k+3}{5k-3}\)

Do đó: \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)

b: \(\dfrac{7a^2+8ab}{11a^2-8b^2}=\dfrac{7b^2k^2+8\cdot bk\cdot b}{11\cdot b^2\cdot k^2-8b^2}=\dfrac{7k^2+8k}{11k^2-8}\)

\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2k^2+8\cdot dk\cdot d}{11\cdot d^2\cdot k^2-8d^2}=\dfrac{7k^2+8k}{11k^2-8}\)

Do đó: \(\dfrac{7a^2+8ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)

2 tháng 8 2018

đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

a) thay \(a=bk;c=dk\) ta có

\(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\)(1)

\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\)(2)

từ (1);(2)\(\Rightarrow\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)

b) thay \(a=bk;c=dk\) ta có

\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7(bk)^2+3bkb}{11(bk)^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}\)

\(=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\)(3)

\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7\left(dk\right)^2+3dkd}{11\left(dk\right)^2-8d^2}=\dfrac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}\)

\(=\dfrac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\)(4)

từ (3);(4)\(\Rightarrow\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)

5 tháng 4 2017

a) dk: \(\left\{{}\begin{matrix}a,d\ne0\\5a\ne3b\\5c\ne3d\end{matrix}\right.\) \(VT=\dfrac{5a+3b}{5a-3b}=\dfrac{5.\dfrac{a}{b}+3}{5\dfrac{a}{b}-3}=\dfrac{5.\dfrac{c}{d}+3}{5\dfrac{c}{d}-3}=\dfrac{\dfrac{5c+3d}{d}}{\dfrac{5c-3d}{d}}=\dfrac{5c+3d}{d}.\dfrac{d}{5c-3d}=\dfrac{5c+3d}{5c-3d}=VP\)

b)

\(\left\{{}\begin{matrix}b,d\ne0\\11a^2\ne8b^2\\11c^2\ne8d^2\end{matrix}\right.\)

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\left(\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}\right)\Rightarrow\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7.\dfrac{a^2}{b^2}+3\dfrac{a}{b}}{11\dfrac{.a^2}{b^2}-8}=\dfrac{7.\dfrac{c^2}{d^2}+3\dfrac{c}{d}}{11\dfrac{.c^2}{d^2}-8}=\dfrac{7c^2+3cd}{11c^2-8d^2}=VP\)

17 tháng 8 2017

Mk chỉ làm 1 câu thôi mấy câu sau tương tự theo cách đó nhoa:v

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\Rightarrow\left(\dfrac{a-b}{c-d}\right)^4=\left(\dfrac{bk-b}{dk-d}\right)^4=\left[\dfrac{b\left(k-1\right)}{d\left(k-1\right)}\right]^4=\dfrac{b^4}{d^4}\)

\(\dfrac{a^4+b^4}{c^4+d^4}=\dfrac{bk^4+b^4}{dk^4+d^4}=\dfrac{b^4\left(k^4+1\right)}{d^4\left(k^4+1\right)}=\dfrac{b^4}{d^4}\)

\(\Rightarrow\left(\dfrac{a-b}{c-d}\right)^4=\dfrac{a^4+b^4}{c^4+d^4}\Rightarrowđpcm\)

17 tháng 8 2017

Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a^4}{c^4}\)=\(\dfrac{b^4}{d^4}\)=\(\dfrac{a^4+b^4}{c^4+d^4}\)(1)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a-b}{c-d}\)=\(\left(\dfrac{a-b}{c-d}\right)^4\)(2)
Từ (1) và (2)suy ra:
\(\left(\dfrac{a-b}{c-d}\right)^4\)=\(\dfrac{a^4+b^4}{c^4+d^4}\)(đpcm)
b) Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{5a}{5c}\)=\(\dfrac{3b}{3d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{5a}{5c}\)=\(\dfrac{3b}{3d}\)=\(\dfrac{5a+3b}{5c+3d}\)(1)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{5a}{5b}\)=\(\dfrac{3b}{3d}\)=\(\dfrac{5a-3b}{5c-3d}\)(2)
Từ (1) và (2) suy ra:
\(\dfrac{5a+3b}{5c+3d}\)=\(\dfrac{5a-3b}{5c-3d}\)=\(\dfrac{5a+3b}{5a-3b}\)=\(\dfrac{5c+3d}{5c-3d}\) (đpcm)
c) Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)
Do đó: \(\dfrac{a}{c}\).\(\dfrac{b}{d}\)=\(\left(\dfrac{a}{c}\right)^2\)\(\dfrac{a}{c}\).\(\dfrac{b}{d}\)=\(\left(\dfrac{b}{d}\right)^2\)
=>\(\dfrac{ab}{cd}\)=\(\dfrac{a^2}{c^2}\)\(\dfrac{ab}{cd}\)=\(\dfrac{b^2}{d^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{ab}{cd}\)=\(\dfrac{a^2}{c^2}\)=\(\dfrac{b^2}{d^2}\)=\(\dfrac{7a^2}{7c^2}\)=\(\dfrac{8b^2}{8d^2}\)=\(\dfrac{3ab}{3cd}\)=\(\dfrac{7a^2+3ab}{7c^2+3cd}\)(1)
Ta có: \(\dfrac{a^2}{c^2}\)=\(\dfrac{b^2}{d^2}\)=> \(\dfrac{11a^2}{11c^2}\)=\(\dfrac{8b^2}{8d^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a^2}{c^2}\)=\(\dfrac{b^2}{d^2}\)=\(\dfrac{11a^2}{11c^2}\)=\(\dfrac{8b^2}{8d^2}\)=\(\dfrac{11a^2-8b^2}{11c^2-8d^2}\)(2)
Từ (1) và (2) suy ra:
\(\dfrac{7a^2+3ab}{7c^2+3cd}\)=\(\dfrac{11a^2-8b^2}{11c^2-8d^2}\)=\(\dfrac{7a^2+3ab}{11a^2-8b^2}\)=\(\dfrac{7c^2+3cd}{11c^2-8d^2}\)

19 tháng 3 2017

a)Đặt \(\dfrac{a}{b}=\dfrac{c}{b}=k\left(k\ne0\right)\)

=> a=bk; c=dk

+) \(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(1\right)\)

+) \(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(2\right)\)

Từ (1) và (2)=> \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)

b) cũng đặt và cm tương tự

6 tháng 8 2018

viết nhầm thành \(\dfrac{c}{b}\) kìa bn

31 tháng 7 2018

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (*)

a) Từ (*) ta có:

\(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\) (1)

\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\) (2)

Từ (1) và (2) suy ra \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)

b) Từ (*) ta có:

\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\) (3)

\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}=\dfrac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\) (4)

Từ (3) và (4) suy ra \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)

P/s: test lại đề phần b), mẫu số của vế trái

31 tháng 7 2018

a, Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{5a}{5c}=\dfrac{3b}{3d}\)\(=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)

\(\Rightarrow\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)

\(\Rightarrow\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\left(đpcm\right)\)

Vậy \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+5d}{5c-5d}\)