a.x(x-3)=x^2-6
b.x^2-7x+12=0
c.x^3-25x=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Ta có: \(x^3+3x^2+3x-7=0\)
\(\Leftrightarrow x+1=2\)
hay x=1
b: Ta có: \(x\left(x-3\right)-4x+12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
a: \(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)
hay x=1/2
b: \(\Leftrightarrow\left(3x-1\right)^2=0\)
hay x=1/3
c: \(\Leftrightarrow\left(x+4\right)^2=0\)
hay x=-4
a) ⇒ \(\left(x-\dfrac{1}{2}\right)^2\)= 0
⇒ \(x-\dfrac{1}{2}=0\)
⇒ \(x=\dfrac{1}{2}\)
b) ⇒ \(\left(3x-1\right)^2=0\)
⇒ \(3x-1=0\)
⇒ \(3x=1\)
⇒ \(x=\dfrac{1}{3}\)
c) ⇒ \(\left(x+4\right)^2=0\)
⇒ \(x+4=0\)
⇒ \(x=-4\)
\(a,\Rightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\\ b,\Rightarrow x^2=-1\left(vô.lí\right)\Rightarrow x\in\varnothing\\ c,\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\\ d,\Rightarrow x^2=3\Rightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)
a) \(\Rightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
b) \(x^2+1=0\)
\(\Rightarrow x^2=-1\left(VLý.do.x^2\ge0\forall x\right)\)
Vậy \(S=\varnothing\)
c) \(\Rightarrow x=\pm\sqrt{2}\)
d) \(\Rightarrow x^2=3\Rightarrow x=\pm\sqrt{3}\)
ĐK \(x\ge\frac{4}{7}\)
PT <=> \(x^2+6x-1+2=2\sqrt{\left(7x-4\right)\left(x^2-x+3\right)}\)
<=> \(\left(\sqrt{x^2-x+3}-\sqrt{7x-4}\right)^2+2=0\) vô nghiệm do VT>0 với mọi \(x\ge\frac{4}{7}\)
Vậy PT vô nghiệm
\(a,x\left(x-3\right)=x^2-6\\ \Rightarrow x^2-3x-x^2=-6\\ \Rightarrow-3x=-6\\ \Rightarrow x=2\\ b,x^2-7x+12=0\\ \Rightarrow\left(x^2-3x\right)-\left(4x-12\right)=0\\ \Rightarrow x\left(x-3\right)-4\left(x-3\right)=0\\ \Rightarrow\left(x-3\right)\left(x-4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\\ d,x^3-25x=0\\ \Rightarrow x\left(x^2-25\right)=0\\ \Rightarrow x\left(x-5\right)\left(x+5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x0=\\x=5\\x=-5\end{matrix}\right.\)