1) Phuong trinh -2x2 - 4x +3 = m co nghiem khi:
A. m < 5 B. m ≥ 5 C. m > 5 D.m ≤ 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x2 - (m+1)x =5
=>3x2 - (m+1)x - 5 =0
denta:(m+1)2-(-4(3.5))
=(m+1)(m+1)+972
=m2+2m+973>0 với mọi m
=>(1) có luôn có nghiệm (Đpcm)
a, Đặt \(x^2=t\left(t\ge0\right)\)
Khi đó \(PT< =>t^1+4t-5=0\)
\(< =>t^2-1+4t-4=0\)
\(< =>\left(t-1\right)\left(t+1\right)+4\left(t-1\right)=0\)
\(< =>\left(t-1\right)\left(t+5\right)=0\)
\(< =>\orbr{\begin{cases}t=1\left(tm\right)\\t=-5\left(loai\right)\end{cases}}\)
\(< =>x^2=1< =>\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
Vậy ...
Thay m = 2 vào , ta có :
\(PT< =>x^2-2\left(2+1\right)x+2^2+3.2-4=0\)
\(< =>x^2-6x+6=0\)
\(< =>\left(x^2-6x+9\right)-\sqrt{3}^2=0\)
\(< =>\left(x-3-\sqrt{3}\right)\left(x-3+\sqrt{3}\right)=0\)
\(< =>\orbr{\begin{cases}x=3+\sqrt{3}\\x=3-\sqrt{3}\end{cases}}\)
\(\hept{\begin{cases}3x-y=2m+3\\x+2y=3m+1\end{cases}}\Leftrightarrow\hept{\begin{cases}6x-2y=4m+6\\x+2y=3m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=m+1\\y=m\end{cases}}\)khi đó: \(^{x^2+y^2=5\Leftrightarrow2m^2+2m+1=5\Leftrightarrow2m^2+2m-4=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-2\end{cases}}}\)
\(pt\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-4mx-4=0\left(1\right)\end{matrix}\right.\)
để pt có 3 nghiệm pb thì pt(1) phải có 2 nghiệm pb khác 1
+)xét th pt(1) có 1 nghiệm bằng 1
khi đó ta có \(1-4m-4=0\Leftrightarrow m=\dfrac{-3}{4}\)
suy ra để pt(1) phải có 2 nghiệm pb khác 1 thì \(m\ne\dfrac{-3}{4}\)
+)để pt(1) có 2 nghiệm pb thì ac<0\(\Leftrightarrow-4< 0\) (luôn đúng với mọi m)
vậy để pt có 3 nghiệm pb thì \(m\ne\dfrac{-3}{4}\)
a. vs m=-1 ,thay vào pt(1) ,ta đc :
x^2 -(-1+2)x +2.(-1) =0
<=>x^2 -x-2 =0
Có : đenta = (-1)^2 -4.(-2) =9 >0
=> căn đenta =căn 9 =3
=> X1 =2 ; X2=-1
Vậy pt (1) có tập nghiệm S={-1;2}
thay x=1 vào phương trình đã cho
Có m.1.1+2.1+m.m-5.m +2=0 ( rồi sau đó thu gọn các hạng tử đồng dạng )
<=> m2 - 4m + 4 = 0
<=> m2 - 2m - 2m + 4 = 0 ( rồi nhóm các hạng tử lại với nhau , chọn nhân tử chung phù hợp )
<=> m( m - 2 ) - 2( m - 2 ) = 0
<=> ( m - 2 ) ( m - 2 ) = 0
<=> ( m - 2 ) 2 = 0
=> m - 2 = 0
<=> m = 2
Vậy để phương trình này có nghiệm là x=1 thì m = 2
lập bảng biến thiên cho phương trình f(x) = \(-2x^2-4x+3\)
nhìn bảng biến thiên ta thấy phương trình có nghiệm khi \(m\le5\)