Cho tam giác ABC cân tại A, đường cao AD. Gọi M là trung điểm của AB. E là điểm đối xứng với D qua M.
a) CM: tứ giác ADBE là hình chữ nhật
b) TỨ giác ACDE là hình gì? CHứng minh?
c) Lấy điểm K sao cho B là trung điểm của AK. CM: CK=2CM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
góc CAB=90 độ
Do đó: ABDC là hình chữ nhật
a,Xét tứ giác ABDC có:
D đối xứng với A qua M nên :
DA=DC(1)
M là trung điểm BC nên:
BM=MC(2)
Từ (1)và (2) suy ra:
tứ giác ABDC là hình chữ nhật(đpcm)
b, vì ABDC là hình chữ nhật nên:
AB=DC và AB//DC
mà DC=FC và F trên tia DC
=>AB=FC và AB//FC
vậy tứ giác ABCF là hình bình hành(đpcm)
a: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
a: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
a: Xét tứ giác AEMC có
ME//AC
ME=AC
Do đó: AEMC là hình bình hành
\(a,\) Vì M là trung điểm AC và BD nên ABCD là hình bình hành
\(b,\) Vì ABCD là hình bình hành nên \(AD//BC;AD=BC\)
Do đó \(AK//CH;AK=CH(\dfrac{1}{2}AD=\dfrac{1}{2}BC)\)
Do đó AHCK là hình bình hành
Mà \(\Delta ABC\) cân tại A nên trung tuyến AH cũng là đường cao
Do đó \(AH\bot HC\)
Vậy AHCK là hình chữ nhật
\(c,\) Vì AHCK là hình chữ nhật nên trung điểm M của AC cũng là trung điểm của HK
Vậy H,M,K thẳng hàng
\(d,\) Để AHCK là hình vuông thì \(HK\bot AC\) tại M
Mà H,K là trung điểm BC,AC nên HK là đtb \(\Delta ABC\)
Do đó \(HK//AB\)
Mà \(HK\bot AC\) nên \(AC\bot AB\)
Vậy nếu tam giác ABC vuông cân tại A thì AHCK là hình vuông
Sửa đề: E đối xứng D qua điểm O
a: Xét tứ giác ADCE có
O là trung điểm chung của AC và DE
=>ADCE là hình bình hành
Hình bình hành ADCE có \(\widehat{ADC}=90^0\)
nên ADCE là hình chữ nhật
b: Ta có: ADCE là hình chữ nhật
=>AE//CD và AE=CD
Ta có: ΔABC cân tại A
mà AD là đường cao
nên D là trung điểm của BC
=>DB=DC
Ta có: AE//DC
D\(\in\)BC
Do đó: AE//DB
Ta có: AE=DC
DC=DB
Do đó: AE=DB
Xét tứ giác AEDB có
AE//DB
AE=DB
Do đó: AEDB là hình bình hành
=>AD cắt EB tại trung điểm của mỗi đường
mà I là trung điểm của AD
nên I là trung điểm của EB
Chào em, em tự đặt câu hỏi rồi tự trả lời nhé.
Còn tái phạm là sẽ xóa bài + trừ GP để cảnh cáo đó.
Em có thể hỏi bài thoải mái, nhưng nếu hỏi xong tự mình trả lời sẽ là gian lận buff GP.
Lời giải:a)
$M$ là trung điểm $AB$. $E$ đối xứng với $D$ qua $M$ nên $M$ là trung điểm $DE$. Như vậy, xét tứ giác $ADBE$ có 2 đường chéo $AB$ và $ED$ cắt nhau tại trung điểm $M$ của chính nó nên $ADBE$ là hình bình hành. Mà $\widehat{D}=90^0$ nên $ADBE$ là hình chữ nhật.
b)
Vì $ADBE$ là hình chữ nhật nên $AE=BD$ và $AE\parallel BD$.
$ABC$ cân tại $A$ nên đường cao $AD$ đồng thời là đường trung tuyến. Do đó $BD=DC$
Suy ra $AE\parallel DC$ và $AE=DC$. Do đó $ACDE$ là hình bình hành.
c)
Ta thấy: $MD=\frac{1}{2}AC$ (tính chất đường trung bình)
$MB=\frac{1}{2}AB=\frac{1}{2}AC$
$\Rightarrow MB=MD\Rightarrow \widehat{MBD}=\widehat{MDB}$
$\Rightarrow 180^0-\widehat{MBD}=180^0-\widehat{MDB}$
$\Leftrightarrow \widehat{KBC}=\widehat{MDC}$
Xét tam giác $KBC$ và $MDC$ có:
$\widehat{KBC}=\widehat{MDC}$ (cmt)
$\frac{KB}{BC}=\frac{AB}{BC}=\frac{\frac{AB}{2}}{\frac{BC}{2}}=\frac{MD}{DC}$
$\Rightarrow \triangle KBC\sim \triangle MDC$ (c.g.c)
$\Rightarrow \frac{KC}{MC}=\frac{BC}{DC}=2$
$\Rightarrow KC=2MC$ (đpcm)
Hình vẽ: