K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2021

Ở phân thức đầu tiên, bạn nhân cả tử và mẫu với c. Lúc này nó trở thành a^2.c/(1 + a^2.c + c).

Phân thức thứ 2, chuyển số 5 thành a^2.bc và chia cả tử lẫn mẫu cho b.

Phân thức cuối giữ nguyên.

Lúc này biểu thức cuối trở thành dạng cùng mẫu.

Tính như bình thường, kết quả là 1.

29 tháng 11 2021

Cảm ơn nha

 

12 tháng 9 2016

a) A=5a+5b

A=5(a+b)

A=5.5

A=25

b) B=13a+5b+13b+5a

B=13(a+b)+5(a+b)

B=(13+5)(a+b)

B=18.5

B=90

c) C=25a+16b+4b-5a

C=a(25-5) +b(16+4)

C=20a+20b

C=20(a+b)

C=20.5

C=100

11 tháng 9 2017

cảm ơn bạn nha mình biết ơn bạn nhiều!

NV
30 tháng 8 2021

Ta chứng minh BĐT sau cho các số dương:

\(x^5+y^5\ge xy\left(x^3+y^3\right)\)

\(\Leftrightarrow x^5-x^4y+y^5-xy^4\ge0\)

\(\Leftrightarrow\left(x^4-y^4\right)\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\) (đúng)

Áp dụng:

\(\dfrac{a^5+b^5}{ab\left(a+b\right)}\ge\dfrac{ab\left(a^3+b^3\right)}{ab\left(a+b\right)}=\dfrac{a^3+b^3}{a+b}=a^2-ab+b^2\)

Tương tự và cộng lại:

\(VT\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)=2-\left(ab+ca+ca\right)\)

\(VT\ge4-\left(ab+bc+ca\right)-2=4\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\)

\(VT\ge4\left(ab+bc+ca\right)-\left(ab+bc+ca\right)-2=3\left(ab+bc+ca\right)-2\) (đpcm)

14 tháng 9 2018

ta co: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1.\)

=> a = b = c 

\(\Rightarrow S=\frac{4a-5b+2019c}{5a-5b+2020c}=\frac{4a-5a+2019a}{5a-5a+2020c}=\frac{2018a}{2020a}=\frac{1009}{1010}\)

14 tháng 9 2018

ta co: a/b=b/c=c/a =  (a+b+c)/(b+c+a) = 1

=> a/b = 1 => a = b

b/c =  1 => b = c

=> a = b = c

\(\Rightarrow S=\frac{4a-5a+2019a}{5a-5a+2020a}=\frac{2018a}{2020a}=\frac{1009}{1010}.\)

4 tháng 6 2018

Bạn CM \(a^5+b^5\ge ab\left(a^3+b^3\right)\)

\(\Rightarrow\frac{ab}{a^5+b^5+ab}\le\frac{1}{a^3+b^3+abc}\)

Tiếp tục \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{c}{a+b+c}\)

\(\Rightarrow\frac{ab}{a^5+b^5+ab}\le\frac{c}{a+b+c}\)

Tương tự cộng lại suy ra \(VT\le1\)

Dấu = xảy ra khi a=b=c=1

4 tháng 6 2018

Mỉnh cảm ơn nha