Cho a, b, c thoả mãn a²bc =5. Tính tổng 5a²/a²b+5a²+5 + b/bc+b+5 + c/a²c+c+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A=5a+5b
A=5(a+b)
A=5.5
A=25
b) B=13a+5b+13b+5a
B=13(a+b)+5(a+b)
B=(13+5)(a+b)
B=18.5
B=90
c) C=25a+16b+4b-5a
C=a(25-5) +b(16+4)
C=20a+20b
C=20(a+b)
C=20.5
C=100
Ta chứng minh BĐT sau cho các số dương:
\(x^5+y^5\ge xy\left(x^3+y^3\right)\)
\(\Leftrightarrow x^5-x^4y+y^5-xy^4\ge0\)
\(\Leftrightarrow\left(x^4-y^4\right)\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\) (đúng)
Áp dụng:
\(\dfrac{a^5+b^5}{ab\left(a+b\right)}\ge\dfrac{ab\left(a^3+b^3\right)}{ab\left(a+b\right)}=\dfrac{a^3+b^3}{a+b}=a^2-ab+b^2\)
Tương tự và cộng lại:
\(VT\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)=2-\left(ab+ca+ca\right)\)
\(VT\ge4-\left(ab+bc+ca\right)-2=4\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\)
\(VT\ge4\left(ab+bc+ca\right)-\left(ab+bc+ca\right)-2=3\left(ab+bc+ca\right)-2\) (đpcm)
ta co: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1.\)
=> a = b = c
\(\Rightarrow S=\frac{4a-5b+2019c}{5a-5b+2020c}=\frac{4a-5a+2019a}{5a-5a+2020c}=\frac{2018a}{2020a}=\frac{1009}{1010}\)
ta co: a/b=b/c=c/a = (a+b+c)/(b+c+a) = 1
=> a/b = 1 => a = b
b/c = 1 => b = c
=> a = b = c
\(\Rightarrow S=\frac{4a-5a+2019a}{5a-5a+2020a}=\frac{2018a}{2020a}=\frac{1009}{1010}.\)
Bạn CM \(a^5+b^5\ge ab\left(a^3+b^3\right)\)
\(\Rightarrow\frac{ab}{a^5+b^5+ab}\le\frac{1}{a^3+b^3+abc}\)
Tiếp tục \(a^3+b^3\ge ab\left(a+b\right)\)
\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{c}{a+b+c}\)
\(\Rightarrow\frac{ab}{a^5+b^5+ab}\le\frac{c}{a+b+c}\)
Tương tự cộng lại suy ra \(VT\le1\)
Dấu = xảy ra khi a=b=c=1
Ở phân thức đầu tiên, bạn nhân cả tử và mẫu với c. Lúc này nó trở thành a^2.c/(1 + a^2.c + c).
Phân thức thứ 2, chuyển số 5 thành a^2.bc và chia cả tử lẫn mẫu cho b.
Phân thức cuối giữ nguyên.
Lúc này biểu thức cuối trở thành dạng cùng mẫu.
Tính như bình thường, kết quả là 1.
Cảm ơn nha