Giải hệ phương trình: \(\left\{{}\begin{matrix}x^3-y^3+2x^2+4y^2+5-0\\x^2+2y^2+4x-13y+7=0\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}15x-6y=-27\\8x+6y=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2y=5x+9\\23x=-23\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(-1;2\right)\)
2)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}2x+y=4\\2x+4y=10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3y=-6\\x=5-2y\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(1;2\right)\)
3)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=14\\3x+6y=12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=4-x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(2;1\right)\)
4)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}5x+6y=17\\54x-6y=42\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}59x=59\\y=9x-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(1;2\right)\)
Pt đầu chắc là sai đề (chắc chắn), bạn kiểm tra lại
Với pt sau:
Nhận thấy một ẩn bằng 0 thì 2 ẩn còn lại cũng bằng 0, do đó \(\left(x;y;z\right)=\left(0;0;0\right)\) là 1 nghiệm
Với \(x;y;z\ne0\)
Từ pt đầu ta suy ra \(y>0\) , từ đó suy ra \(z>0\) từ pt 2 và hiển nhiên \(x>0\) từ pt 3
Do đó:
\(\left\{{}\begin{matrix}y=\dfrac{2x^2}{x^2+1}\le\dfrac{2x^2}{2x}=x\\z=\dfrac{3y^3}{y^4+y^2+1}\le\dfrac{3y^3}{3\sqrt[3]{y^4.y^2.1}}=y\\x=\dfrac{4z^4}{z^6+z^4+z^2+1}\le\dfrac{4z^4}{4\sqrt[4]{z^6z^4z^2}}=z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y\le x\\z\le y\\x\le z\end{matrix}\right.\) \(\Rightarrow x=y=z\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)
Vậy nghiệm của hệ là \(\left(x;y;z\right)=\left(0;0;0\right);\left(1;1;1\right)\)
a.\(\left\{{}\begin{matrix}4x+2y=14\\2x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x=18\\2x-2y=4\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2\\4-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\-2y=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
vậy hệ pt có ndn \(\left\{2;0\right\}\)
b.\(\left\{{}\begin{matrix}2x-4y=0\\3x+2y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=0\\6x+4y=16\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}8x=16\\2x-4y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\4-4y=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2\\-4y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
vậy hệ pt có ndn \(\left\{2;1\right\}\)
1) \(\left\{{}\begin{matrix}3x-2y=4\\4x+2y=10\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}3x-2y=4\\7x=14\end{matrix}\right.< =>\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}2x+3y=5\\4x+6y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x=6y=10\end{matrix}\right.\)
=> Hệ có vô số nghiệm.
3)\(\left\{{}\begin{matrix}3x-4y=-2\\10x+4y=28\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}3x-4y=-2\\13x=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}6x+15y=9\\6x-4y=28\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}6x+15y=9\\19y=19\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-1\end{matrix}\right.\)
a.
\(\left\{{}\begin{matrix}x^3-y^3=16x-4y\\-4=5x^2-y^2\end{matrix}\right.\)
Nhân vế:
\(-4\left(x^3-y^3\right)=\left(16x-4y\right)\left(5x^2-y^2\right)\)
\(\Leftrightarrow21x^3-5x^2y-4xy^2=0\)
\(\Leftrightarrow x\left(7x-4y\right)\left(3x+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4y}{7}\\y=-3x\end{matrix}\right.\)
Thế vào \(y^2=5x^2+4...\)
b. Đề bài không hợp lý ở \(4x^2\)
c.
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=9\\3x^2+6y^2=3x-12y\end{matrix}\right.\)
Trừ vế:
\(x^3-y^3-3x^2-6y^2=9-3x+12y\)
\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)
\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)
\(\Leftrightarrow x-1=y+2\)
\(\Leftrightarrow y=x-3\)
Thế vào \(x^2=2y^2=x-4y\) ...
1. \(\left\{{}\begin{matrix}3x+4y=11\\2x-y=-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+4y=11\\8x-4y=-44\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+4y=11\\11x=-33\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=-3\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}3x+2y=0\\2x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2y=0\\4x+2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=-2\end{matrix}\right.\)
3.\(\left\{{}\begin{matrix}3x+\dfrac{5}{2}y=9\\2x+\dfrac{1}{3}y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+5y=18\\6x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y=12\\6x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=\dfrac{1}{2}\end{matrix}\right.\)
b/
Lần lượt cộng trừ vế cho vế ta được:
\(\left\{{}\begin{matrix}x^3+y^3=7\left(x+y\right)\\x^3-y^3=19\left(x-y\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)\left(x^2+y^2-xy-7\right)=0\\\left(x-y\right)\left(x^2+y^2+xy-19\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\\\left\{{}\begin{matrix}x^2+y^2-xy-7=0\\x^2+y^2+xy-19=0\end{matrix}\right.\end{matrix}\right.\)
Hai trường hợp đầu bạn tự thế vào giải
Trường hợp 3, trừ vế cho vế: \(2xy-12=0\Rightarrow xy=6\Rightarrow y=\frac{6}{x}\)
Thế vào pt đầu: \(x^3=13x-\frac{36}{x}\Leftrightarrow x^4-13x^2+36=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2=9\\x^2=4\end{matrix}\right.\)
a/ Trừ vế cho vế:
\(2x-2y=y^2-x^2-4y+4x\)
\(\Leftrightarrow x^2-y^2-2x+2y=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=x\\y=2-x\end{matrix}\right.\)
Thế vào pt đầu:
\(\Rightarrow\left[{}\begin{matrix}2x=x^2-4x+5\\2x=\left(2-x\right)^2-4\left(2-x\right)+5\end{matrix}\right.\)
Bạn tự giải nốt
Cộng vế:
\(x^3-y^3+3x^2+3y^2+4x-4y+4=0\)
\(\Leftrightarrow\left(x+1\right)^3-\left(y-1\right)^3+x-y+2=0\)
\(\Leftrightarrow\left(x-y+2\right)\left(x^2+y^2+xy+x-y+2\right)=0\)
\(\Leftrightarrow\left(x-y+2\right)\left[\left(x+\dfrac{y}{2}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\left(y-1\right)^2+1\right]=0\)
\(\Leftrightarrow y=x+2\)