Tìm số tự nhiên n để \(n^{2003}+n^{2002}+1\) là số nguyên tố.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
Xét n=0 thì A=1 ko phải số nguyên tố;n=1 thì A=3 là số nguyên tố
Xét n>1:\(A=n^{2012}-n^2+n^{2002}-n+n^2+n+1\)
\(=n^2\left(\left(n^3\right)^{670}-1\right)+n\left(\left(n^3\right)^{667}-1\right)+\left(n^2+n+1\right)\)
Mà \(\left(\left(n^3\right)^{670}-1\right)\)chia hết cho \(n^3-1\)
\(\Rightarrow\left(\left(n^3\right)^{670}-1\right)\)chia hết cho \(n^2+n+1\)
Tương tự \(\left(\left(n^3\right)^{667}\right)\)chia hết cho \(n^2+n+1\)
Vậy A chia hết cho \(n^2+n+1>1\)nên A là hợp số.Vậy \(n=1\)
Xét n=0 thì A=1 ko phải số nguyên tố;n=1 thì A=3 là số nguyên tố
Xét n>1:A=n2012−n2+n2002−n+n2+n+1
=n2((n3)670−1)+n((n3)667−1)+(n2+n+1)
Mà ((n3)670−1)chia hết cho n3−1
⇒((n3)670−1)chia hết cho n2+n+1
Tương tự ((n3)667)chia hết cho n2+n+1
A chia hết cho n2+n+1>1nên A là hợp số.Vậy n=1
Ta có A = n2012 - n2 + n2002 - n + n2 + n + 1
= n2[(n3)670 - 1] + n[(n3)667 - 1] + (n2 + n + 1)
= (n3 - 1)X + (n3 - 1)Y + (n2 + n + 1)
= (n2 + n + 1)(X' + Y' + 1)
Với n = 1 thì A = 3
Với n > 1 thì A không phải là số nguyên tố do là tích của 2 số nhân với nhau