K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải giúp mình các bài này với ạ!1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = ACa. CM : Tam giác OAB = tam giác OACb. CM : AC là tiếp tuyến của đường tròn tâm Oc. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không...
Đọc tiếp

Giải giúp mình các bài này với ạ!

1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm

2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O

3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.

0
17 tháng 11 2023

a: BA là tiếp tuyến của (O) có B là tiếp điểm

=>OB\(\perp\)BA tại B

=>ΔOBA vuông tại B

ΔBOA vuông tại B

=>\(BO^2+BA^2=OA^2\)

=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)

=>\(BA=R\sqrt{3}\)

b: ΔOBC cân tại O

mà OA là đường cao

nên OA là tia phân giác của \(\widehat{BOC}\)

Xét ΔOBA và ΔOCA có

OB=OC

\(\widehat{BOA}=\widehat{COA}\)

OA chung

Do đó: ΔOBA=ΔOCA

=>\(\widehat{OCA}=\widehat{OBA}=90^0\)

=>AC là tiếp tuyến của (O)

c: Xét ΔABO vuông tại B có \(sinBAO=\dfrac{BO}{OA}=\dfrac{1}{2}\)

nên \(\widehat{BAO}=30^0\)

ΔOBA=ΔOCA

=>\(\widehat{BAO}=\widehat{CAO}\) và AB=AC

=>\(\widehat{BAC}=2\cdot\widehat{BAO}=2\cdot30^0=60^0\)

Xét ΔABC có AB=AC và \(\widehat{BAC}=60^0\)

nên ΔABC đều

a: ΔOEH cân tại O

mà OM là đường cao

nên M là trung điểm của EH và OM là phân giác của góc EOH

ΔOME vuông tại M

=>\(MO^2+ME^2=OE^2\)

=>\(ME^2=5^2-3^2=16\)

=>\(ME=\sqrt{16}=4\left(cm\right)\)

M là trung điểm của EH

=>EH=2*ME=8(cm)

b:

OM là phân giác của góc EOH

mà A\(\in\)OM

nên OA là phân giác của góc EOH

Xét ΔOEA và ΔOHA có

OE=OH

\(\widehat{EOA}=\widehat{HOA}\)

OA chung

Do đó: ΔOEA=ΔOHA

=>\(\widehat{OEA}=\widehat{OHA}=90^0\)

=>AH là tiếp tuyến của (O)

c: Xét (O) có

BF,BH là tiếp tuyến

Do đó: BF=BH và OB là phân giác của \(\widehat{FOH}\)

OB là phân giác của góc FOH

=>\(\widehat{FOH}=2\cdot\widehat{HOB}\)

OA là phân giác của góc HOE

=>\(\widehat{HOE}=2\cdot\widehat{HOA}\)

Ta có: \(\widehat{FOH}+\widehat{HOE}=\widehat{FOE}\)

=>\(\widehat{FOE}=2\cdot\left(\widehat{HOA}+\widehat{HOB}\right)\)

=>\(\widehat{FOE}=2\cdot\widehat{AOB}=180^0\)

=>F,O,E thẳng hàng

ΔOEA=ΔOHA

=>AE=AH

Xét ΔOBA vuông tại O có OH là đường cao

nên \(AH\cdot HB=OH^2\)

mà AH=AE và BH=BF

nên \(AE\cdot BF=OH^2=R^2\)

4 tháng 12 2023

a) Để tính độ dài dây EH, ta sử dụng định lý Pythagoras trong tam giác vuông OMH:
OH^2 = OM^2 + MH^2
Với OM = 3cm và OH = R = 5cm, ta có:
MH^2 = OH^2 - OM^2 = 5^2 - 3^2 = 25 - 9 = 16
MH = √16 = 4cm

Do đó, độ dài dây EH = 2 * MH = 2 * 4 = 8cm.

b) Để chứng minh AH là tiếp tuyến của đường tròn (O), ta sử dụng định lý tiếp tuyến - tiếp điểm:
Trong tam giác vuông OHE, ta có OM vuông góc với AE (do EH vuông góc với AO tại M). Vì vậy, theo định lý tiếp tuyến - tiếp điểm, ta có AH là tiếp tuyến của đường tròn (O).

c) Để chứng minh 3 điểm E, O, F thẳng hàng và BF.AE = R^2, ta sử dụng định lý Euclid:
Theo định lý Euclid, trong một đường tròn, các tiếp tuyến tại hai điểm cùng cung là song song. Vì vậy, ta có BF // AE.
Do đó, theo định lý Euclid, ta có BF.AE = R^2.

24 tháng 10 2017

mk ko bt 123

24 tháng 10 2017

123 làm được rồi help mình câu 4

Xét (O) có

AM,AN là các tiếp tuyến

Do đó: AM=AN

=>A nằm trên đường trung trực của MN(1)

Ta có: OM=ON

=>O nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra OA là đường trung trực của MN

=>OA\(\perp\)MN tại I

Xét ΔOHA vuông tại H và ΔOIC vuông tại I có

\(\widehat{HOA}\) chung

Do đó: ΔOHA~ΔOIC

=>\(\dfrac{OH}{OI}=\dfrac{OA}{OC}\)

=>\(OH\cdot OC=OA\cdot OI\)

mà \(OA\cdot OI=OM^2=OB^2\)

nên \(OB^2=OH\cdot OC\)

=>\(\dfrac{OB}{OH}=\dfrac{OC}{OB}\)

Xét ΔOBC và ΔOHB có

\(\dfrac{OB}{OH}=\dfrac{OC}{OB}\)

\(\widehat{BOC}\) chung

Do đó: ΔOBC~ΔOHB

=>\(\widehat{OBC}=\widehat{OHB}\)

mà \(\widehat{OHB}=90^0\)

nên \(\widehat{OBC}=90^0\)

=>CB là tiếp tuyến của (O)

21 tháng 1

mà OA⋅OI=OM2=OB2

nên OB2=OH⋅OC

đoạn này không hiểu ạ , góc B đã vuông đâu

a: ΔOBC cân tại O

mà OA là đường cao

nên OA là phân giác của góc BOC

Xét ΔOBA và ΔOCA có

OB=OC

\(\widehat{BOA}=\widehat{COA}\)

OA chung

Do đó: ΔOBA=ΔOCA

=>\(\widehat{OBA}=\widehat{OCA}=90^0\)

=>AC là tiếp tuyến của (O;R)

b: \(\widehat{MOA}+\widehat{COA}=\widehat{MOC}=90^0\)

\(\widehat{MAO}+\widehat{BOA}=90^0\)(ΔBAO vuông tại B)

mà \(\widehat{COA}=\widehat{BOA}\)

nên \(\widehat{MOA}=\widehat{MAO}\)

=>ΔMAO cân tại M