Chứng minh rằng các phân số sau đây tối giản, n thuộc N
12n+1 trên 30n+2
21n+4 trên 14n+3
Lưu ý : trên là dấu gạch ngang giữa tử và mẫu. Có cả cách làm nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN (12n+1;30n+2) = d ( d thuộc N sao )
=> 12n+1 và 30n+2 đều chia hết cho d
=> 5.(12n+1) và 2.(30n+2) đều chia hết cho d
=> 60n+5 và 60n+4 đều chia hết cho d
=> 60n+5-(60n+4) chia hết cho d
=> 1 chia hết cho d
=> d=1 ( vì d thuộc N sao )
=> ƯCLN (12n+1;30n+2) = 1
=> phân số 12n+1/30n+2 là phân số tối giản
Tk mk nha
Gọi d là ước chung lớn nhất của 12n+1 và 30n+2
Khi đó \(12n+1⋮d\Rightarrow5.\left(12n+1\right)⋮d\Rightarrow60n+5⋮d\)
\(30n+2⋮d\Rightarrow2.\left(30n+2\right)⋮d\Rightarrow60n+4⋮d\)
Do đó \(60n+5-60n-4⋮d\Rightarrow1⋮d\Rightarrow d=1\)( vì d là số nguyên tố )
Khi đó ƯCLN(12n+1;30n+2)=1 hay \(\frac{12n+1}{30n+2}\)là phân số tối giản
a) Gọi d là ƯCLN của 12n+1/30n+2, ta có
12n+1 chia hết cho d và 30n+2 chia hết cho d, ta có
(12n+1)-(30n+2) chia hết cho d
=> 5(12n+1)-2(30n+20 chia hết cho d
60n+5-60n-4 chia hết cho d
60n-60n+5-4 chia hết cho d
1 chia hết cho d => d=1 hay ƯCLN của 12n+1 và 30n+2
Vậy 12n+1/30n+2 là phân số tối giản
câu b tương tự
đúng mình cái
a
Gọi ƯCLN (12n+1,30n+2) là d
⇒(12n+1)⋮d
(30n+2)⋮d
⇒5(12n+1)−2(30n+2)⋮d
⇒60n+5−60n−4⋮d
⇒1⋮d⇔d=1
Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản
Gọi (12n+1,30n+2)=d
=> 12n+1 chia hết cho d => 5(12n+1) chia hết cho d (1)
30n+2 chia hết cho d => 2(30n+2) chia hết cho d (2)
Từ (1) và (2) => 5(12n+1) - 2(30n+2) chia hết cho d
60n+5 - 60n+4 chia hết cho d
1 chia hết cho d
=> d=1
=> 12n+1/30n+2 là phân số tối giản
Phần tiếp theo tương tự
minh kho biet