K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2020

Mọi người làm nhanh jup mik nhé, ai có đáp án sẽ k luôn. Kamsa =)

27 tháng 3 2020

kkk em mới học lớp 7

2 tháng 9 2020

Bày này chỉ có đạt giá trị lớn nhất thôi nhé ! Bạn xem lại đề !

D E B A K M C

Lời giải :

Gọi \(M\) là trung điểm của \(BC.\) \(\Rightarrow AM\) không đổi.

Kẻ \(KM\perp DE\)

Khi đó tứ giác \(BDEC\) là hình thang. \(\left(BD//KM//EC\right)\)

Xét hình thang \(BDCE\) có : \(M\) là trung điểm của \(BC,\) \(BD//KM//EC\) ( cmt )

\(\Rightarrow K\) là trung điểm của \(DE\)

\(\Rightarrow KM\) là đường trung bình của hình thang \(BDEC\)

\(\Rightarrow BD+EC=2.KM\)

Mặt khác ta có : \(KM\le AM\) nên \(BD+EC\le2AM\) 

Dấu "=" xảy ra \(\Leftrightarrow xy\perp AM\)

Vậy \(BD+CE\) đạt giá trị lớn nhất là \(2AM\) \(\Leftrightarrow xy\perp AM\)

28 tháng 10 2017

Ta có ABCD là hình thang vuông tại C và D

Mà O Là trung điểm AB và OM vuông góc với CD( tiếp tuyến của (O)

=> AD+BC=2OM=2R.  Chú ý rằng CD ≤ AB (hình chiếu đường xiên)

=>  S A B C D = 1 2 A D + B C . C D

= R.CD ≤ R.AB = 2 R 2

Do đó S A B C D  lớn nhất khi CD=AB hay M là điểm chính giữa nửa đường tròn đường kính AB