một số chính phương chia cho 3 thì số dư có thể bằng bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét các trường hợp :
n = 3k ( k thuộc N ) \(\Rightarrow\)A = 9k2 \(⋮\)3
n= 3k \(\mp\)1 ( k thuộc N ) \(\Rightarrow\)A = 9k2 \(\mp\)6k + 1 , chia 3 dư 1
Vậy số chính phương chia cho 3 chỉ thể dư 0 hoặc 1
Gọi A là số chính phương A = n2 (n ∈ N)
a)Xét các trường hợp:
n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3
n= 3k 1 (k ∈ N) A = 9k2 6k +1 chia cho 3 dư 1
Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .
b)Xét các trường hợp
n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.
n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1
= 4k(k+1)+1,
chia cho 4 dư 1(chia cho 8 cũng dư 1)
vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .
Chú ý: Từ bài toán trên ta thấy:
-Số chính phương chẵn chia hết cho 4
-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).
bạn à câu C hình như bạn viết thiếu đề
các số chính phương lần lượt có dạng (3k)2 , (3k+1)2 , (3k+2)2 (k thuộc Z)
*) vì 3 luôn chia hết cho 3
=> 3k chia hết cho 3 (vì k thuộc Z )
=> (3k)2 chia hết cho 3
=> 1 scp chia hết cho 3 (1)
*) ta có (3k+1)2 = 9k2 + 6k +1
vì 9k2 chia hết cho 3
6k chia hết cho 3
=> 9k2 + 6k chia hết cho 3
=> 9k2 + 6k + 1 chia 3 dư 1
hay 1 scp chia 3 dư 1 (2)
*) ta có (3k+2)2 = 9k2 + 6k + 4
vì 9k2 chia hết cho 3
6k chia hết cho 3
3 chia hết cho 3
=>9k2 + 6k +3 chia hết cho 3
=> 9k2 + 6k +3 +1 chia 3 dư 1
hay 1 scp chia 3 dư 1 (3)
từ (1) (2) và (3) => 1 scp chia 3 dư 1 hoặc 2