số dư của 71+72+73+.....736 khi chia cho 8 là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1+7\right)+...+7^{2020}\left(1+7\right)=8\left(1+...+7^{2020}\right)⋮8\)
\(A = (1 + 7) +...+7^2\)\(^0\)\(^2\)\(^0\) \((1 + 7) = 8 (1+...+7^2\)\(^0\)\(^2\)\(^0\)\() \) ⋮\(8\)
E=7+7^2+...+7^36
=(7+7^2)+...+(7^35+7^36)
=7.(1+7)+...+7^35.(1+7)
=7.8+...+7^35.8
=8(7+7^3+...+7^35)
Suy ra E chia het cho 8
Vậy số dư của E khi chia cho 8 dư 0
Dư 0
Học lớp 5 thì ghi chi cho mệt lấy k à, không biết làm nói đại đi còn bày đặt lười đánh máy
8 do dung 100000000000000000000000000000000000000000000000000000000000000000000000%
gọi số dư của a khi chia cho 72 là r (0<=r<72) ta có:
+) r chia 9 dư 7 => r thuộc { 7;16;25;34;43;52;61;70}
mà r chia 8 dư 3 => r=43
Ta có:
E = 7 + 72 + 73 + ... + 736
E = ( 7 + 72) + ( 73 + 74) + ...+ ( 735 + 736)
E = 7(1 + 7) + 73(1 + 7) + ....+735(1 + 7)
E = 7 . 8 + 73 . 8 +... + 735 . 8
E = 8( 1 + 73 +...+735) chia hết cho 8
Vậy E chia hết cho 8
7+72+73+...........+736
=(7+72)+(73+74)+...................+(735+736)
=(7+7.7)+(73+73.7)+............+(735+735.7)
=7(7+1)+73(7+1)+..........+735(7+8
=7.8+73.8+...........+735.8
=(7+73+........+735).8 chia hết cho 8
=> số dư là 0
số dư của 71+72+73+.....736 khi chia cho 8 là 0
bai toan nay kho