Tìm 1 số có 2 chữ số biết 3 lần số đó bằng bình phương tổng các chữ số của nó và số đó bằng 4 lần tổng các chữ số của nó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên cần tìm là \(\overline{ab}\left(0< a< 10;0\le b\le9;a,b\in N\right)\)
Vì số đó bằng tổng bình phương các chữ số của nó cộng thêm 4
=> \(\overline{ab}=a^2+b^2+4\)
<=> a2 - 10a + b2 - b + 4 = 0 (1)
Lại có số đó lớn hơn 2 lần tích các chữ số của nó 5 đơn vị
=> \(\overline{ab}-2ab=5\)
<=> 10a + b - 2ab - 5 = 0 (2)
Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}a^2-10a+b^2-b+4=0\\10a+b-2ab-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2-10a+b^2-b+4=0\\\left(1-2a\right)\left(b-5\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2-10a+b^2-b+4=0\\\left[{}\begin{matrix}a=\dfrac{1}{2}\left(\text{loại}\right)\\b=5\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2-10a+5^2-5+4=0\\b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-4\right)\left(a-6\right)=0\\b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=4\\a=6\end{matrix}\right.\\b=5\end{matrix}\right.\)
Vậy 2 số cần tìm là 45 và 65
ab
trong hệ tp ab=10a+b
theo bài có pt
10a+b=a^2+b^2-11
10a+b=2a.b+5
giải hệ trên
với 0<a<=9, 0<=b<=9
(1-2)=>(a-b)^2=16=>a-b=+-4
=>b=a+-4
thay vào (2)
10a+a+-4=2a^2+-8+5
2a^2-11a+-4+5=0
•2a^2-11a+1=0 loại a không nguyên
•2a^2-11a+9=0
a=(11+-7)/4
a=18/4 loại
a=1 nhận
b=5
đáp số: 15
ab
trong hệ tp ab=10a+b
theo bài có pt
10a+b=a^2+b^2-11
10a+b=2a.b+5
giải hệ trên
với 0<a<=9, 0<=b<=9
(1-2)=>(a-b)^2=16=>a-b=+-4
=>b=a+-4
thay vào (2)
10a+a+-4=2a^2+-8+5
2a^2-11a+-4+5=0
•2a^2-11a+1=0 loại a không nguyên
•2a^2-11a+9=0
a=(11+-7)/4
a=18/4 loại
a=1 nhận
b=5
đáp số
15
abc - 46 x (a + b + c ) = 76 x ( a + b + c) - abc
abc + abc = 76 x ( a + b + c) + 46x(a + b + c )
abc x 2 = 122 x ( a+ b + c)
abc = 61 x ( a + b + c)
( a + b + c) > 6 ( vì b + c > 4 và a # 0)
( a + b + c ) < 17 ( vì 61 x 17 > abc)
=> a + b + c = 7, 8, 9, 10,....., 16
=> abc = 366, 427, 488, 549, 610, 671, 732, 793, 854, 915, 976
Thử chọn ta được số: 732 và 915
abc - 46 x (a + b + c ) = 76 x ( a + b + c) - abc abc + abc = 76 x ( a + b + c) + 46x(a + b + c ) abc x 2 = 122 x ( a+ b + c) abc = 61 x ( a + b + c) ( a + b + c) > 6 ( vì b + c > 4 và a # 0) ( a + b + c ) < 17 ( vì 61 x 17 > abc) => a + b + c = 7, 8, 9, 10,....., 16 => abc = 366, 427, 488, 549, 610, 671, 732, 793, 854, 915, 976 Thử chọn ta được số: 732 và 915