Cho khối lăng trụ đứng A B C . A ’ B ’ C ’ có đáy là tam giác đều. Mặt phẳng ( A ’ B C ) tạo với đáy góc 30 ∘ và tam giác A ’ B C có diện tích bằng 8. Tính thể tích V của khối lăng trụ đã cho.
A . V = 64 3
B . V = 2 3
C . V = 8 3
D . V = 16 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương pháp:
Xác định góc 30 ° (góc tạo bởi hai mặt phẳng là góc giữa hai đường thẳng cùng vuông góc với giao tuyến).
Tính diện tích tam giác đáy và chiều cao lăng trụ rồi tính thể tích theo công thức V = B.h
Cách giải:
Ta có:
Chọn A.
Đáp án C
Gọi H là trọng tâm tam giác đều ABC có diện tích S A B C = a 3 2
A 1 cách đều A, B, C
⇒ α = 60 o
Chọn đáp án D.
Ta có A'A = A'B = A'C nên hình chiếu của A' là tâm đường tròn ngoại tiếp tam giác ABC.
Do tam giác ABC đều nên trọng tâm G là tâm đường tròn ngoại tiếp tam giác ABC.
AG là hình chiếu của A'A lên mặt phẳng (ABC)
Góc giữa A'A với mặt phẳng (ABC) là: A ' A G ^
Gọi H là trung điểm BC.
Ta có:
Xét tam giác A'AG vuông tại G:
Diện tích tam giác đều ABC là:
Thể tích khối lăng trụ ABC.A'B'C' là: