Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?
A. y = x + 1
B. y = x 2
C. y = x − 1 x + 2
D. y = s inx
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm \(y = \cot x\)là hàm tuần hoàn với chu kì \(T = \pi \)do :
- Tập xác định là \(D = R\backslash \left\{ {k\pi ;k \in Z} \right\}\)
- Với mọi \(x \in D\), ta có \(x - \pi \; \in D\) và \(x + \pi \in D\;\)
Suy ra
\(\begin{array}{l}f\left( {x + \pi } \right) = \cot \left( {x + \pi } \right) = \cot \left( x \right) = f(x)\\f\left( {x - \pi } \right) = \cot \left( {x - \pi } \right) = \cot \left( x \right) = f\left( x \right)\end{array}\)
Ta có: \(y = \cos x\)
\(y\left( { - x} \right) = \cos \left( { - x} \right) = \cos x = y\)
Suy ra hàm số \(y = \cos x\) là hàm số chẵn
Vậy ta chọn đáp án C
\(c,y=2x+2-2x=2\\ d,y=3x-3-x=2x-3\\ f,y=x+\dfrac{1}{x}=\dfrac{x^2+1}{x}\)
Hs bậc nhất là a,b,d,e
\(a,-2< 0\Rightarrow\text{nghịch biến}\\ b,\sqrt{2}>0\Rightarrow\text{đồng biến}\\ d,2>0\Rightarrow\text{đồng biến}\\ e,-\dfrac{2}{3}< 0\Rightarrow\text{nghịch biến}\)
\(y=\dfrac{1}{2}\left(x^2-1\right)\) không phải hàm số bậc nhất
a: y=2x-1
a=2>0
=>Hàm số đồng biến
b: y=-3x+5
a=-3<0
=>Hàm số nghịch biến
c: \(y=\left(\sqrt{3}-\sqrt{2}\right)\cdot x\)
\(a=\sqrt{3}-\sqrt{2}>0\)
=>Hàm số đồng biến
d: \(y=-\dfrac{1}{2}\sqrt{x}+1\)
Vì -1/2<0 nên hàm số nghịch biến
Đáp án D
Hàm y = sin x là hàm tuần hoàn với chu kỳ T = 2 π