K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2018

Đáp án D

Định lí: “Nếu hàm số y = f x  liên tục trên a ; b  và f a . f b < 0  thì tồn tại ít nhất một điểm c ∈ a ; b  sao cho f c = 0 ”.

Mệnh đề 1: SAI ở giả thiết (a;b).

Mệnh đề 2: Nếu hàm số y=f(x) liên tục trên  a ; b

và f a . f b < 0 thì tồn tại ít nhất một điểm c ∈ a ; b  sao cho c hay  f x = 0 là nghiệm của phương trình f(x)=0 nên mệnh đề 2 ĐÚNG.

Mệnh đề 3: Nếu hàm số y=f(x) liên tục, đơn điệu trên a ; b và f a . f b < 0  thì đồ thị hàm số y=f(x) cắt trục Ox tại duy nhất một điểm thuộc khoảng (a;b) nên f(x)=0 có nghiệm duy nhất trên (a;b). Do đó mệnh đề 3 ĐÚNG

7 tháng 2 2019

Đáp án là C 

I.Sai ví dụ hàm số y = x 3  đồng biến trên

(−¥; +¥) nhưng y' ³  0, "x Î (−¥; +¥

II.Đúng

III.Đúng

12 tháng 1 2018

Đáp án A

Mệnh đề đúng 1,3

7 tháng 10 2017

Đáp án B

Nhìn đồ thị, ta thấy f' đổi dấu từ dương sang âm khi đi qua điểm x = -2, do đó x = -2 là điểm cực đại của hàm f => C đúng, B sai.

Tương tự, f’ đổi dấu từ âm sang dương khi đi qua điểm x = 0, do đó x = 0 là điểm cực tiểu của hàm f => A đúng.

19 tháng 9 2019

Đáp án B

Quan sát đồ thị hàm số y = f ' x  ta có:

f ' x > 0 ⇔ x < − 2 x > 0 , f ' x < 0 ⇔ − 2 < x < 0 ⇒  B sai; A,C và D đúng.

22 tháng 2 2018

Chọn B.

Dựa vào đồ thị ta có bảng biến thiên:

16 tháng 4 2017

Phương pháp: Sử dụng phương pháp đổi biến, đặt t = u(x)

Cách giải:

Đặt

Đổi cận 

12 tháng 12 2019

Chọn C.

Từ đồ thị dễ thấy hàm số nghịch biến và liên tục trên [-3;0] nên  m a x [ - 3 ; 0 ]   f ( x ) = f(-3)

28 tháng 12 2017

Chọn C.

Từ đồ thị dễ thấy hàm số nghịch biến và liên tục trên [-3;0] nên 

15 tháng 7 2019