K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2020

5x2 + 8xy + 5y2 = 72

<=> 5x2 + 10xy + 5y2 - 2xy = 72

<=> 5(x2 + 2xy + y2) - 2xy = 72

<=> 5(x + y)2 - 2xy = 72

<=> -2xy = 72 - 5(x + y)2

A = x2 + y2 = (x + y)2 - 2xy

= (x + y)2 + 72 - 5(x + y)2 

= 72 - 4(x + y)2

(x + y)2 > 0 => -4(x + y)2 < 0

=> A < 72

dấu "=" xảy ra khi : x +  y = 0 <=> x = -y

3 tháng 3 2020

Max:

\(M=\frac{x^2+xy+y^2}{x^2+y^2}=1+\frac{xy}{x^2+y^2}\le1+\frac{xy}{2\left|xy\right|}\le1+\frac{xy}{2xy}=1+\frac{1}{2}=\frac{3}{2}\)

Dấu "=" xảy ra tại x=y

b: \(B\ge2021\forall x,y\)

Dấu '=' xảy ra khi x=y=3

6 tháng 6 2018

câu 1

x^2 -5x +y^2+xy -4y +2014 

=(y^2+xy +1/4x^2) -4(y+1/2x)+4 +3/4x^2-3x+2010

=(y+1/2x-2)^2 +3/4(x^2-4x+4)+2007

=(y+1/2x-2)^2 +3/4(x-2)^2 +2007

GTNN là 2007<=> x=2 và y=1

6 tháng 6 2018

Điều kiện có 2 nghiệm phân biệt tự làm nha

Theo vi-et ta có:

\(\hept{\begin{cases}x_1+x_2=5\\x_1.x_2=m-2\end{cases}}\)

\(2\left(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}\right)=3\)

\(\Leftrightarrow4\left(\frac{1}{x_1}+\frac{1}{x_2}+\frac{2}{\sqrt{x_1.x_2}}\right)=9\)

\(\Leftrightarrow4\left(\frac{5}{m-2}+\frac{2}{\sqrt{m-2}}\right)=9\)

Làm nốt nhé

6 tháng 6 2018

Câu 1:

M=\(\left(x^2+2xy+y^2\right)+\left(2x+2y\right)+1+\left(4x^2-4x+1\right)+2014\)

=\(\left(\left(x+y\right)^2+2\left(x+y\right)+1\right)+\left(2x-1\right)^2+2014\)

=\(\left(x+y+1\right)^2+\left(2x-1\right)^2+2014\ge2014\)

\(\Rightarrow M\ge2014\Leftrightarrow minM=2014\)

\(\Leftrightarrow\hept{\begin{cases}x+y+1=0\\2x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0,5\\y=1,5\end{cases}}\)

4 tháng 8 2016
a/ (x^2 + xy*2/2 + (y^2)/4) + ((3y^2)/4 - y*(√3)(√3)*2/2 + 3) - 3 = (x+y/2)^2 + (y√3 / 2 - √3)^2 - 3>=-3 đạt GTNN khi y=-2x=2