K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2017


NV
17 tháng 7 2021

a.

TXĐ: \(D=\left[-4;2\right]\)

\(0\le\sqrt{9-\left(x+1\right)^2}\le3\Rightarrow-1\le\sqrt{9-\left(x+1\right)^2}\le2\)

\(\Rightarrow f'\left(\sqrt{8-x^2-2x}-1\right)\le0\) ; \(\forall x\in D\)

\(g'\left(x\right)=-\dfrac{x+1}{\sqrt{8-x^2-2x}}.f'\left(\sqrt{8-x^2-2x}-1\right)\) luôn cùng dấu \(x+1\)

\(\Rightarrow g\left(x\right)\) đồng biến trên \(\left[-1;2\right]\) và nghịch biến trên \(\left[-4;-1\right]\)

Từ BBT ta thấy \(g\left(x\right)_{max}=g\left(-4\right)=g\left(2\right)=f\left(-1\right)=?\)

\(g\left(x\right)_{min}=g\left(-1\right)=f\left(2\right)=?\)

(Do đề chỉ có thế này nên ko thể xác định cụ thể được min-max)

b.

\(g'\left(x\right)=\left(2x+1\right).f'\left(x^2+x\right)=0\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\f'\left(x^2+x\right)=0\left(1\right)\end{matrix}\right.\)

Xét (1), ta chỉ cần quan tâm 2 nghiệm bội lẻ:

\(f'\left(x^2+x\right)=0\Rightarrow\left[{}\begin{matrix}x^2+x=-1\left(vô-nghiệm\right)\\x^2+x=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Với \(\left[{}\begin{matrix}x\le-2\\x\ge1\end{matrix}\right.\) \(\Rightarrow x^2+x\ge2\) ; với \(-2\le x\le1\Rightarrow-1\le x^2+x\le2\) nên ta có bảng xét dấu:

undefined

Từ BBT ta có: \(x=-\dfrac{1}{2}\) là cực đại, \(x=-2;x=1\) là 2 cực tiểu

Hàm đồng biến trên ... bạn tự kết luận

15 tháng 12 2017

18 tháng 5 2019

Chọn D 

Xét hàm số .

.

Ta lại có thì . Do đó thì .

thì . Do đó thì .

Từ đó ta có bảng biến thiên của như sau

Dựa vào bảng biến thiên, ta có

I. Hàm số có 3 điểm cực trị . LÀ MỆNH ĐỀ ĐÚNG.

II. Hàm số đạt cực tiểu tại LÀ MỆNH ĐỀ SAI.

III. Hàm số đạt cực đại tại LÀ MỆNH ĐỀ SAI.

IV. Hàm số đồng biến trên khoảng LÀ MỆNH ĐỀ ĐÚNG.

V. Hàm số nghịch biến trên khoảng LÀ MỆNH ĐỀ SAI.

 

Vậy có hai mệnh đề đúng.

21 tháng 12 2020

ở chỗ x<1=> x= -2 thì sao bạn ơi =>(x^2 -3) =1 >0 thì sao f ' (...)>0 được ????

12 tháng 7 2018

Đáp án là C

1 tháng 9 2018

Chọn C.

Vì đề bài hỏi điểm cực tiểu của đồ thị hàm số, dựa hình vẽ ta thấy điểm là điểm cực tiểu của đồ thị hàm số.

4 tháng 1 2020

Đáp án D.

18 tháng 8 2019

1 tháng 11 2017

5 tháng 8 2019