Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B , BC = 2 a , SA vuông góc với mặt phẳng đáy và SA = 2 a 3 . Gọi M là trung điểm của AC. Khoảng cách giữa hai đường thẳng AB và SM bằng
A. a 39 13
B. 2 a 13
C. 2 a 3 13
D. 2 a 39 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC vuông góc AM
BC vuông góc SA
=>BC vuông góc (SAM)
b: BC vuông góc (SAM)
=>BC vuông góc SM
=>(SM;(ABC))=90 độ
Đáp án A
Do SA ⊥ (ABC) tại A nên A là hình chiếu của S lênmặt phẳng (ABC) kéo theo AE là hình chiếu của AE lên mặt phẳng (ABC).
Áp dụng định lý Py-ta-go trong ∆ S A E vuông tại B, ta có:
Trong ∆ S A E vuông tại A SA ⊥ (ABC) nên SA ⊥ AE, ta có:
Chọn đáp án A
Phương pháp
Sử dụng lý thuyết: Góc giữa hai đường thẳng chéo nhau a, b bằng góc giữa đường thẳng a với mặt phẳng (P) chứa b mà song song với a.
Cách giải
Gọi N là trung điểm của BC thì AB//MN suy ra d(AB,SM)=d(AB,(SMN))=d(A,(SMN))
Gọi E là hình chiếu của A lên MN
Đáp án D