Cho các hàm số f x = x 4 + 2018 , g x = 2 x 3 - 2018 và h x = 2 x - 1 x + 1 . Trong các hàm số đã cho, có tất cả bao nhiêu hàm số không có khoảng nghịch biến?
A. 2
B. 1
C. 0
D. 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là A
nên hàm số có khoảng đồng biến và nghịch biến.
nên hàm số luôn đồng biến trên R.
nên hàm số luôn đồng biến trên từng khoảng xác định.
Vậy có 2 hàm số không có khoảng nghịch biến.
Đáp án D
Ta có Đáp án D
Ta có y’ = –f’(1 – x) + 2018 = –[1–(1–x)][(1–x)+2]g(1–x) – 2018 + 2018
= –x(3–x)g(1–x)
Suy ra (vì g(1–x) < 0, ∀ x ∈ R )
Vậy hàm số đã cho nghịch biến trên khoảng 3 ; + ∞
Tính [G(x) - f(x) ] = ( \(1-x^2+.....+x^{2020}\)) - (\(x^{2020}-x^{2019}+....-x+1\))
= (\(x^{2020}-x^{2019}+....-x+1\)) - (\(x^{2020}-x^{2019}+....-x+1\))
= 0
=> h(x) = [G(x) - f(x) ] * [G(x) + f(x) ]
= 0 * [G(x) + f(x) ]
= 0
Đáp án là A