K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2019

Đáp án là A 

9 tháng 3 2017

22 tháng 7 2018

Đáp án là A  

 nên hàm số có khoảng đồng biến và nghịch biến.

 nên hàm số luôn đồng biến trên R.

 nên hàm số luôn đồng biến trên từng khoảng xác định.

Vậy có 2 hàm số không có khoảng nghịch biến.

16 tháng 11 2019

Đáp án D

Ta có Đáp án D

Ta có y’ = –f’(1 – x) + 2018 = –[1–(1–x)][(1–x)+2]g(1–x) – 2018 + 2018

= –x(3–x)g(1–x)

Suy ra  (vì g(1–x) < 0,  ∀ x ∈ R ) 

Vậy hàm số đã cho nghịch biến trên khoảng  3 ; + ∞

22 tháng 3 2019

23 tháng 10 2019

13 tháng 1 2019

19 tháng 7 2017

24 tháng 12 2019

27 tháng 2 2018

Tính [G(x) - f(x) ] = ( \(1-x^2+.....+x^{2020}\)) -  (\(x^{2020}-x^{2019}+....-x+1\))

                          = (\(x^{2020}-x^{2019}+....-x+1\)) - (\(x^{2020}-x^{2019}+....-x+1\))

                          = 0

=> h(x) = [G(x) - f(x) ] * [G(x) + f(x) ]

            = 0 * [G(x) + f(x) ]

           = 0