Cho hình chóp tứ giác đều S.ABCD có độ dài cạnh đáy bằng 1. Gọi E, F lần lượt là trung điểm các cạnh SA và BC. Biết rằng E F = 6 2 sin của góc giữa đường thẳng EF và mặt phẳng (SPD) bằng
A. 3 3
B. 6 3
C. 42 12
D. 102 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Gọi I là hình chiếu của M lên (ABCD), suy ra I là trung điểm của AO.
Khi đó
Xét tam giác CNI có
Áp dụng định lý cosin ta có:
Xét tam giác MIN vuông tại I nên
Mà MI//SO
Chọn hệ trục tọa độ như hình vẽ. Ta có:
Khi đó
Vectơ pháp tuyến mặt phẳng (SBD)
Suy ra
Đáp án A
Gọi I,J lần lượt là trung điểm cạnh BC và SA
Suy ra, IJ là hình chiếu vuông góc của EM lên (SBD)
Đáp án A
Gọi I,J lần lượt là trung điểm cạnh BC và SA
Ta có A C ⊥ S B D , EI // AC, MJ//AC => E I ⊥ ( S B D ) , M J ⊥ ( S B D )
Suy ra, IJ là hình chiếu vuông góc của EM lên (SBD)
Đáp án C
Phương pháp:
- Gắn hệ trục tọa độ Oxyz, tìm tọa độ các điểm E, M.
- Sử dụng công thức tính góc giữa đường thẳng và mặt phẳng: sin α = n → . u → n → . u →
Cách giải:
Đáp án B
Ta có M N , A B C D = ^ M N H ^ = 60 0 , N H = 3 a 4 2 + a 4 2 = a 10 4 ⇒ M H = a 30 4 ⇒ S O = a 30 2
Gọi I là trung điểm của AD
Kẻ O K ⊥ S I ⇒ d B C , D M = d B C , S A D = d C , S A D = 2 d M , S A D = 2 O K .
Ta có 1 O K 2 = 1 O I 2 + 1 O S 2 = 1 a 2 2 + 1 a 30 2 2 = 124 30 a 2 ⇒ O K = a 30 2 31 .
Vậy d B C , D M = 2 O K = a 30 31 .
Chọn gốc toạ độ tại O = A C ∩ B D các tia Ox, Oy, Oz lần lượt trùng với các tia OC, OB, OS. Ta có O(0;0;0), A - 2 2 ; 0 ; 0 , B 0 ; 2 2 ; 0 C 2 2 ; 0 ; 0 , D 0 ; - 2 2 ; 0 , S(0;0;h)
Khi đó
Do đó
Chọn đáp án A.