K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2019

Đáp án D

27 tháng 7 2017

Chọn D

Ta chia khối lập phương thành hai khối lăng trụ đứng;

Ứng với mỗi khối lăng trụ đứng ta có thể chia thành ba khối tứ diện đều mà các đỉnh của tứ diện cũng là đỉnh của hình lập phương.

Vậy có tất cả là 6 khối tứ diện có thể tích bằng nhau.

7 tháng 2 2016

1)

Chia lăng trụ ABD.A'B'D' thành ba tứ diện DABD', A'ABD', A'B'BD'. Phép đối xứng qua (ABD') biến DABD' thành A'ABD', Phép đối xứng qua (BA'D') biến A'ABD' thành A'B'BD' nên ba tứ diện DABA', A'ABD', A'B'BD' bằng nhau

Làm tương tự đối với lăng trụ BCD.B'C'D' ta sẽ chia được hình lập phương thành sáu tứ diện bằng nhau.


 

ai giải được thì tik 6 nghĩa là 2 ngày nha

7 tháng 2 2016

1)

Chia lăng trụ ABD.A’B’D’ thành ba tứ diện DABD’, A’ABD’, A’B’BD’. Phép đối xứng qua (ABD’) biến DABD’ thành A’ABD’, Phép đối xứng qua (BA’D’) biến A’ABD’ thành A’B’BD’ nên ba tứ diện DABA’, A’ABD’, A’B’BD’ bằng nhau.

Làm tương tự đối với lăng trụ BCD.B’C’D’ ta sẽ chia được hình lập phương thành sáu tứ diện bằng nhau.

9 tháng 3 2018

Chọn C

31 tháng 8 2017

Mỗi một hình tứ diện được tạo thành từ 3 đỉnh thuộc một mặt của hình lập phương và một đỉnh từ 4 đỉnh của mặt đối diện ta có C 4 3 . C 4 1 . Ta có 6 trường hợp như thế (6 mặt của hình lập phương). Vậy ta có 16.6 = 96. Chọn A

25 tháng 7 2017

4 tháng 9 2018

Đáp án C

 

 

10 tháng 11 2018

Đáp án C

Nhìn hình vẽ ta thấy V 1 = V S . M I A G .

 

Gọi   V S . A B C D = V

                 ⇒ V S . A B C = V S . A D C = V 2

Có  V S . A G M V S . A B C = S G S B . S M S C = 2 3 . 1 2 = 1 3

                      ⇒ V S . A G M = V 6

 

Có  V S . A M I V S . A D C = S M S C . S I S D = 1 2 . 2 3 = 1 3

                       ⇒ V S . A M I = V 6

                ⇒ V S . M I A G = V 3 ⇒ V 2 = V − V 3 = 2 3 V ⇒ V 2 V 1 = 2

 

 

4 tháng 1 2018

Chọn B.

Mỗi hình lập phương cạnh a có thể chia thành 8 hình lập phương cạnh bằng a/2, 64 hình lập phương cạnh bằng a/4,... Do đó có thể chia một hình lập phương vô số hình lập phương bằng nhau. Mỗi hình lập phương lại có thể chia thành 6 hình tứ diện bằng nhau. Suy ra, có thể chia một hình lập phương thành vô số hình tứ diện bằng nhau.