Một người gửi tiết kiệm với lãi suất 8,4%/năm và lãi hàng năm được nhập vào vốn. Hỏi sau bao nhiêu năm người đó thu được gấp đôi số tiền ban đầu?
A. 8
B. 9
C. 10
D. 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi số tiền ban đầu là a thì ta có
Suy ra sau 9 năm thì người đó sẽ có số tiền gấp đôi số tiền ban đầu
Đáp án A
Ta có T = A 1 + 8 , 4 % n mà T = 2 A suy ra 1 , 084 n = 2 ⇒ n = log 1 , 084 2 ≈ 8 , 6 năm
Giả sử: số tiền ban đầu đem gửi là a (đồng)
Từ yêu cầu bài ra thì số tiền thu được là 2a (đồng)
Vì một năm lãi suất là 8,4%, mà một năm có 12 tháng nên số lãi một tháng là:
Chọn D
Giả sử: số tiền ban đầu đem gửi là a (đồng)
Từ yêu cầu bài ra thì số tiền thu được là 2a (đồng)
Vì một năm lãi suất là 8,4%, mà một năm có 12 tháng nên số lãi một tháng là:
Chọn D
Đáp án C
Theo công thức lãi kép ta có T = A 1 + r n với T là số tiền cả gốc cả lãi thu được, A là số tiền ban đầu, r là số tiền lãi suất, n là kì hạn
Để sổ tiền tăng gấp đôi thì T = 2 A ⇒ 2 A = A 1 + r n ⇔ 2 = 1 + 0 , 075 n ⇔ n = log 1075 2 ≈ 9 , 6 năm
Vậy cẩn 10 năm để sổ tiền tâng gấp đôi
Đáp án B
Gọi A là số tiền ban đầu người đó gửi.
Sau năm đầu, người đó nhận được số tiền là: A + A .9 % = A 1 + 9 % .
Sau năm thứ hai, người đó nhận được số tiền là: A 1 + 9 % 2 .
…
Sau năm thứ n, người đó nhận được A 1 + 9 % n .
Yêu cầu bài toán tương đương với
A 1 + 9 % n = 3 A ⇔ n = log 1 + 9 % 3 ≈ 12,7 năm.
Đáp án B
Gọi số tiền ban đầu là T. Sau n năm, số tiền thu được là: