K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2019

Đáp án D

Gọi I là trung điểm của SC do Δ S A C  vuông tại A, Δ S C D vuông tại D,   Δ S B C vuông tại B nên ta có: I S = I A = I B = I C = I D ⇒ I là tâm mặt cầu ngoại tiếp hình chóp  S . A B C D . R = 1 2 S C = 1 2 S A 2 + A C 2 = a 6 2

18 tháng 4 2021

Đáy là hình vuông hay chữ nhật bạn? Hình chữ nhật sao có các cạnh bằng nhau và bằng a được? 

11 tháng 5 2019

Chọn C

Gọi R và r lần lượt là bán kính mặt cầu ngoại tiếp hình chóp S. BHD và tam giác BHD.

Ta có HB= a 2 2 , H D = H C 2 + D C 2 = a 2 2 2 + a 2 = a 6 2 , B D = a 2 + 2 a 2 = a 3

Áp dụng định lí Cô sin, ta có 

cos B H D ^ = a 2 2 + 3 a 2 2 - 3 a 2 2 . a 2 2 a 6 2 = - 1 3 ⇒ sin B H D ^ = 2 3

Diện tích tam giác BHD là

Gọi O là tâm đường tròn ngoại tiếp tam giác BHD và M là trung điểm SH. Mặt phẳng trung trực của SH cắt trục đường tròn ngoại tiếp tam giác BHD tại E. Khi đó E là tâm mặt cầu cần tìm.

Ta có

12 tháng 5 2019

a: (SB;(ABCD))=(BS;BA)=góc SBA

AC=căn a^2+3a^2=2a

SA=căn SC^2-AC^2=a*căn 3

tan SBA=SA/AB=căn 3

=>góc SBA=60 độ

b: (SC;(SAD))=(SC;SD)=góc SCD

SD=căn SA^2+AD^2=2a*căn 3

cos SCD=(CS^2+CD^2-SD^2)/(2*CS*CD)=-2/căn 7

=>góc SCD=139 độ

NV
7 tháng 4 2022

Chắc đề là \(SM=a\sqrt{3}\) vì không có điểm H nào trong dữ liệu

\(BC=AD=\sqrt{BD^2-AB^2}=a\sqrt{2}\)

a.

Qua M kẻ đường thẳng song song BC cắt CD tại E

\(\Rightarrow CD\perp ME\Rightarrow CD\perp\left(SME\right)\)

\(\Rightarrow\widehat{SEM}\) là góc giữa (SCD) và (ABCD)

Áp dụng định lý talet trong tam giác BCD:

\(\dfrac{EM}{BC}=\dfrac{DM}{BD}=\dfrac{3}{4}\Rightarrow EM=\dfrac{3}{4}BC=\dfrac{3a\sqrt{2}}{4}\)

\(\Rightarrow tan\widehat{SEM}=\dfrac{SM}{EM}=\dfrac{2\sqrt{6}}{3}\)

\(\Rightarrow\widehat{SEM}\approx58^031'\)

NV
7 tháng 4 2022

b.

\(BC||AD\Rightarrow BC||\left(SAD\right)\)

\(\Rightarrow d\left(BC;AD\right)=d\left(BC;\left(SAD\right)\right)=d\left(B;\left(SAD\right)\right)\)

Lại có: BM cắt (SAD) tại D, mà \(BD=\dfrac{4}{3}MD\)

\(\Rightarrow d\left(B;\left(SAD\right)\right)=\dfrac{4}{3}d\left(M;\left(SAD\right)\right)\)

Trong mp (ABCD), từ M kẻ \(MH\perp AD\)

Trong mp (SMH), từ M kẻ \(MK\perp SH\)

\(\Rightarrow MK\perp\left(SAD\right)\Rightarrow MK=d\left(M;\left(SAD\right)\right)\)

Talet cho tam giác ABD:

\(\dfrac{MH}{AB}=\dfrac{MD}{BD}=\dfrac{3}{4}\Rightarrow MH=\dfrac{3}{4}AB=\dfrac{3a}{4}\)

Hệ thức lượng trong tam giác vuông SMH:

\(MK=\dfrac{SM.MH}{\sqrt{SM^2+MH^2}}=\dfrac{3a\sqrt{19}}{19}\)

\(\Rightarrow d\left(SD;BC\right)=\dfrac{4}{3}MK=\dfrac{4\sqrt{19}}{19}\)

6 tháng 8 2018

13 tháng 10 2021

C

13 tháng 10 2021

Cho H.1. Công thức tính diện tích của hình chữ nhật là:

A. S = 4a                   B. S = 1/2(a + b)

 

C. S = ab.                   D. S = 2(a + b)

 

21 tháng 8 2023

THAM KHẢO:

Bài tập 1 trang 56 Toán 11 tập 2 Chân trời

CD//AB nên góc giữa SB và CD là góc giữa AB và SB, \(\widehat{ABS}\)

CB//AD nên góc giữa SD và CB là góc giữa SD và AD, \(\widehat{ADS}\)

Ta có: tan\(\widehat{ABS}\)=tan\(\widehat{ADS}\)=\(\dfrac{a\sqrt{3}}{a}=\sqrt{3}\)

Suy ra \(\widehat{ABS}\)=\(\widehat{ADS}\)=\(\dfrac{\pi}{3}\)

15 tháng 1 2018

Chọn đáp án D

Gọi O là tâm của hình chữ nhật ABCD và I là trung điểm của SC. Khi đó OI  ⊥ (ABCD)

⇒ IA = IB = IC = ID với ∆ S A C  vuông tại A, IA = IS = IC. Do đó I là tâm mặt cầu ngoại tiếp khối chóp S.ABCD suy ra IA = a 2 ⇒ SC = 2a 2 . Mặt khác AC là hình chiếu của SC trên mặt phẳng (ABCD).

Suy ra ∆ S A C  vuông cân