K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

Đáp án D

Tung con súc sắc 2 lần, mỗi lần có trường hợp xảy ra   ⇒ K G M :    n Ω = 6.6 = 36

Có4  trường hợp xuất hiện số chấm của 2 lần gieo bằng 9   là:   3 ; 6   ;    4 ; 5   ;    5 ; 4    ;    6 ; 3

Vậy xác suất để tổng số chấm của 2 lần gieo bằng 9 là:   4 36 = 1 9

6 tháng 6 2018

Đáp án D

Tung con súc sắc 2 lần, mỗi lần có 6 trường hợp xảy ra => KGM:  n Ω = 6.6  = 36

4 trường hợp xuất hiện số chấm của 2 lần gieo bằng 9 là: (3;6); (4;5); (5;4); (6;3)

Vậy xác suất để tổng số chấm của 2 lần gieo bằng 9 là:  4 36   =   1 9

22 tháng 3 2022

A

2 tháng 1 2023

Số phần tử của không gian mẫu là: `n(Ω)=6`

A: "Số chấm xuất hiện nhỏ hơn ba"

`-> n(A)= 2`

`=> P(A)=(n(Ω))/(n(A))=2/6=1/3`

`=>` A. 

 

 

NV
12 tháng 12 2021

Xác suất:

a. \(\dfrac{3}{6}.\dfrac{3}{6}=\dfrac{1}{4}\)

b. \(\dfrac{6}{36}=\dfrac{1}{6}\)

c. Xác suất mặt 6 chấm ko xuất hiện lần nào: \(\dfrac{5}{6}.\dfrac{5}{6}=\dfrac{25}{36}\)

Xác suất mặt 6 xuất hiện ít nhất 1 lần: \(1-\dfrac{25}{36}=\dfrac{11}{36}\)

d. Các trường hợp tổng 2 mặt lớn hơn hoặc bằng 10: (6;4), (4;6); (5;5); (5;6);(6;5);(6;6) có 6 khả năng

\(\Rightarrow36-6=30\) khả năng tổng số chấm bé hơn 10

Xác suất: \(\dfrac{30}{36}=\dfrac{5}{6}\)

29 tháng 8 2018

Đáp án B

Phương pháp: Xác suất của biến cố A là n A n Ω trong đó nA là số khả năng mà biến cố A có thể xảy ra, n Ω  là tất cả các khả năng có thể xảy ra.

Cách giải:  x 2 + b x + c x   +   1   =   0 (*)

Để phương trình (*) vô nghiệm thì phương trình x2 + bx + c = 0 (**) có 2 trường hợp xảy ra:

TH1: PT (**) có 1 nghiệm x = -1 

TH2: PT (**) vô nghiệm 

Vì c là số chấm xuất hiện ở lần gieo thứ 2 nên c ≤ 6   ⇒ b ≤ 2 6   ≈ 4 , 9 .

Mà b là số chấm xuất hiện ở lần giao đầu nên  b   ∈ 1 ; 2 ; 3 ; 4

Với b = 1  ta có: c > 1 4   ⇒ c ∈ 1 ; 2 ; 3 ; 4 ; 5 ; 6  có 6 cách chọn c.

Với b = 2 ta có: c   >   1 ⇒ c ∈ 2 ; 3 ; 4 ; 5 ; 6 có 5 cách chọn c.

Với b = 3 ta có: c   >   9 4   ⇒ c ∈ 3 ; 4 ; 5 ; 6  có 4 cách chọn c.

Với b = 4 ta có: c > 4 => c ∈   5 ; 6 có 2 cách chọn c.

Do đó có 6+5+4+2 = 17 cách chọn (b;c) để phương trình (**) vô nghiệm.

Gieo con súc sắc 2 lần nên số phần tử của không gian mẫu  n Ω   =   6 . 6   =   36

Vậy xác suất đề phương trình (*) vô nghiệm là  1 + 17 36   =   1 2

9 tháng 5 2017

Đáp án B

Xác suất của biến cố A là n A n Ω trong đó n A số khả năng mà biến cố A có thể xảy ra,   n Ω là tất cả các khả năng có thể xảy ra.

x 2 + b x + c x + 1 = 0 *

Để phương trình (*) vô nghiệm thì phương trình   x 2 + b x + c = 0 * * có 2 trường hợp xảy ra:

TH1: PT (**) có 1 nghiệm x= -1

⇒ Δ = b 2 − 4 c = 0 1 − b + c = 0 ⇔ b 2 = 4 c c = b − 1 ⇔ b 2 = 4 b − 4 ⇔ b 2 − 4 b + 4 = 0 ⇔ b = 2 ⇒ c = 1

TH2: PT (**) vô nghiệm  ⇔ Δ = b 2 − 4 c < 0 ⇒ b 2 < 4 c ⇔ b < 2 c

Vì c là số chấm xuất hiện ở lần gieo thứ 2 nên . c ≤ 6 ⇒ b ≤ 2 6 ≈ 4,9

Mà b là số chấm xuất hiện ở lần giao đầu nên b ∈ 1 ; 2 ; 3 ; 4

Với  b=1 ta có:   c > 1 4 ⇒ c ∈ 1 ; 2 ; 3 ; 4 ; 5 ; 6 ⇒ có 6 cách chọn c.

Với b=2 ta có: c > 1 ⇒ c ∈ 2 ; 3 ; 4 ; 5 ; 6 ⇒ có 5 cách chọn c.

Với b=3 ta có:   c > 9 4 ⇒ c ∈ 3 ; 4 ; 5 ; 6 ⇒ có 4 cách chọn c.

Với b=4 ta có: c > 4 ⇒ c ∈ 5 ; 6 ⇒ có 2 cách chọn c.

Do đó có 6 + 5 + 4 + 2 = 17 cách chọn để phương trình (**) vô nghiệm.

Gieo con súc sắc 2 lần nên số phần tử của không gian mẫu n Ω = 6.6 = 36

Vậy xác suất đề phương trình (*) vô nghiệm là 1 + 17 36 = 1 2 .

18 tháng 5 2017

Rõ ràng \(\Omega=\left\{\left(i;j\right):1\le i,j\le6\right\}\)

Kí hiệu :

\(A_1:\) "Lần đầu xuất hiện mặt 1 chấm"

\(B_1:\) "Lần thứ hai xuất hiện mặt 1 chấm"

\(C:\) " Tổng số chấm là 6"

\(D:\) "Mặt 1 chấm xuất hiện ít nhất một lần"

a) Ta có \(C=\left\{\left(1,5\right),\left(5,1\right),\left(2,4\right),\left(4,2\right)\left(3,3\right)\right\},P\left(C\right)=\dfrac{5}{36}\)

b) Ta có \(A_1,B_1\) độc lập và \(D=A_1\cup B_1\) nên

\(P\left(D\right)=P\left(A_1\right)+P\left(B_1\right)-P\left(A_1B_1\right)\)

\(=\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{6}.\dfrac{1}{6}=\dfrac{11}{36}\)

10 tháng 12 2021

Gọi T là biến cố "Số chấm xuất hiện chia hết cho 2".

\(\Rightarrow\left|\Omega\right|=6\)

\(\left|\Omega_T\right|=3\)

\(\Rightarrow P\left(T\right)=\dfrac{\left|\Omega_T\right|}{\left|\Omega\right|}=\dfrac{1}{2}\)