Có bao nhiêu số tự nhiên có tám chữ số trong đó có ba chữ số 0, không có hai chữ số 0 nào đứng cạnh nhau và các chữ số khác chỉ xuất hiện nhiều nhất một lần
A. 786240
B. 907200
C. 846000
D. 151200
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm có dạng a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 ¯
+) Chọn vị trí của 3 chữ số 0 trong 7 vị trí (trừ a 1 ). Vì giữa 2 chữ số 0 luôn ít nhất 1 chữ số khác 0 nên chọn 3 vị trí trong 5 vị trí để điền các số 0, sau đó thêm vào giữa 2 số 0 gần nhau 1 vị trí nữa.
Suy ra số cách chọn là C 5 3 = 10
+) Chọn các số còn lại, ta chọn bộ 5 chữ số trong 9 chữ số từ 1 đến 9, có A 9 5 cách chọn.
Vậy có tất cả 10 . A 9 5 = 151200 số cần tìm.
Chọn đáp án D.
Đáp án A
Lời giải:
Gọi số có 8 chữ số thỏa mãn đề bài là
+ Chọn vị trí của 3 chữ số 0 trong 7 vị trí a2 đến a8: Vì giữa 2 chữ số 0 luôn có ít nhất 1 chữ số khác 0, nên ta chọn 3 vị trí trong 5 vị trí để điền các số 0, sau đó thêm vào giữa 2 số 0 gần nhau 1 vị trí nữa ⇒ Số cách chọn là .
+ Chọn các số còn lại: Ta chọn bộ 5 chữ số (có thứ tự) trong 9 chữ số từ 1 đến 9, có cách chọn
Vậy số các số cần tìm là 10.15120 = 151200 (số)
Đáp án D
Số cách sắp xếp 5 chữ số khác nhau là: A 9 5
Giữa 5 số đó có 6 chỗ trống nhưng số 0 không thể đứng đầu nên số cách sắp xếp 3 chữ số 0 là: C 5 3 = 10 cách
Vậy số các số gồm 8 chữ số thỏa mãn yêu cầu đề bài là: A 9 5 .10=151200
Đáp án D
Số cách sắp xếp 5 chữ số khác nhau là: A 9 5
Giữa 5 số đó có 6 chỗ trống nhưng số 0 không thể đứng đầu nên số cách sắp xếp 3 chữ số 0 là
C 5 3 = 10 c á c h
Vậy số các số gồm 8 chữ số thỏa mãn yêu cầu đề bài là:
A 9 5 .10 = 151200
Đáp án A
Lời giải:
Gọi số có 8 chữ số thỏa mãn đề bài là a 1 a 2 ... a 8 ¯
+ Chọn vị trí của 3 chữ số 0 trong 7 vị trí a2 đến a8: Vì giữa 2 chữ số 0 luôn có ít nhất 1 chữ số khác 0, nên ta chọn 3 vị trí trong 5 vị trí để điền các số 0, sau đó thêm vào giữa 2 số 0 gần nhau 1 vị trí nữa ⇒ Số cách chọn là C 5 3 = 10 .
+ Chọn các số còn lại: Ta chọn bộ 5 chữ số (có thứ tự) trong 9 chữ số từ 1 đến 9, có A 9 5 = 15120 cách chọn
Vậy số các số cần tìm là 10.15120 = 151200 (số)
Số cách chọn 5 chữ số còn lại là: \(A^5_9\)
Giữa 5 số đó có 6 khoảng cách nhưng số 0 ko thể đứng ở đầu
=>Số cách xếp 2 số 0 là: \(C^2_5\left(cách\right)\)
=>Có \(A^5_9\cdot C^2_5=151200\)
1. số tự nhiên có dạng abce ( nhớ gạch trê đầu ( vì đây là số tự nhiên))
* ta có h là :
h= mn
trong đó tập hợp mn là {0,1}
=> có 2 trường hợp xảy ra
(m,n)=(1,0) hoặc (0,1)
* ta có số tự nhiên abhe có tập hợp {h,2,3,4,5,6,7,8,9}
a có 9 cách chọn
b có 8 cách chọn
c có 7 cách chọn
e có 6 cách chọn
vậy có 9*8*7*6=3024 số
*ta phải loại trường hợp h đứng đầu và có dạng 01
trường hợp h đứng đầu và có dạng 01 có số cách chọn là :
a có 1 cách chọn là h
b có 8 cách
c có 7 cách
e có 6 cách
=> có 1*8*7*6=336 số
vậy số tự nhiên theo yêu cầu đề bài có tổng cộng
3024 - 332688 số
0 chắc
Chọn B
Bước 1: ta xếp các số lẻ: có các số lẻ là 1,1,3,5 vậy có 5 ! 3 ! cách xếp.
Bước 2: ta xếp 3 số chẵn 2, 4, 6 xen kẽ 5 số lẻ trên có 6 vị trí để xếp 3 số vậy có A 6 3 cách xếp.
Vậy có 5 ! 3 ! A 6 3 = 2400 số thỏa mãn yêu cầu bài toán.
Chữ số hàng đơn vị có 5 cách chọn
Xếp 5 chữ số còn lại sao cho không có 2 chữ số 2 nào đứng cạnh nhau có đúng 1 cách dạng 2x2y2 trong đó x;y là chữ số bất kì khác được chọn từ 8 chữ số còn lại
Số số thỏa mãn: \(5.A_8^2=...\)
Đáp án D
Số cách sắp xếp 5 chữ số khác nhau là: A 9 5
Giữa 5 số đó có 6 chỗ trống nhưng số 0 không thể đứng đầu nên số cách sắp xếp 3 chữ số 0 là: C 5 3 = 10 cách
Vậy số các số gồm 8 chữ số thỏa mãn yêu cầu đề bài là: A 9 5 .10 = 151200