K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2019

Chọn C

11 tháng 3 2018

3 tháng 2 2018

Đáp án A

Gọi O là tâm của tam giác   A B C ⇒ S A ; A B C ^ = S A ; O A ^ = S A O ^ = 60 °

tam giác SAO vuông tại O, có  

tan S A O ^ = S O O A ⇒ S O = tan 60 ° . a 3 3 = a ⇒ S A = O A 2 + S O 2 = 2 a 3 3

bán kính mặt cầu ngoại tiếp khối chóp  là   R = S A 2 2. S O = 2 a 3

vậy thể tích cần tính là  V = 4 3 π R 3 = 4 3 π 2 a 3 3 = 32 π a 3 81

29 tháng 3 2017

Đáp án đúng : A

1 tháng 11 2019

Đáp án A

 

Ta có

1 tháng 10 2023

a) Độ dài trung đoạn của hình chóp S.ABC là độ dài đoạn thẳng từ trung điểm của cạnh đáy đến đỉnh của hình chóp. Vì tam giác ABC là tam giác đều, nên ta có thể tính độ dài trung đoạn bằng cách sử dụng công thức Pythagoras: Trung đoạn = căn bậc hai của (AC^2 - (AC/2)^2) = căn bậc hai của (8^2 - (8/2)^2) = căn bậc hai của (64 - 16) = căn bậc hai của 48 = 4 căn 3 cm

b) Diện tích xung quanh của hình chóp S.ABC là tổng diện tích các mặt bên của hình chóp. Vì tam giác ABC là tam giác đều, nên diện tích mặt bên của hình chóp là diện tích tam giác đều. Ta có công thức tính diện tích tam giác đều: Diện tích tam giác đều = (cạnh^2 * căn 3) / 4 = (8^2 * căn 3) / 4 = 16 căn 3 cm^2

Diện tích xung quanh = Diện tích tam giác đều + Diện tích đáy = 16 căn 3 + 27,72 = 16 căn 3 + 27,72 cm^2

Diện tích toàn phần của hình chóp là tổng diện tích xung quanh và diện tích đáy: Diện tích toàn phần = Diện tích xung quanh + Diện tích đáy = 16 căn 3 + 27,72 + 27,72 = 16 căn 3 + 55,44 cm^2

c) Thể tích của hình chóp tam giác đều S.ABC được tính bằng công thức: Thể tích = (Diện tích đáy * Chiều cao) / 3 = (27,72 * 7,5) / 3 = 69,3 cm^3

10 tháng 10 2023

tại sao là căn 3

 

5 tháng 8 2018

Đáp án B.

NV
24 tháng 6 2021

Gọi H là trung điểm AB \(\Rightarrow SH\perp\left(ABCD\right)\)

\(\Rightarrow\) CH là hình chiếu vuông góc của SC lên (ABCD)

\(\Rightarrow\widehat{SCH}=60^0\)

Do \(\widehat{ABD}=60^0\Rightarrow\) các tam giác ABD và BCD là tam giác đều cạnh a

\(\Rightarrow\widehat{ABC}=120^0\)

Áp dụng định lý hàm cos cho tam giác BCH:

\(CH=\sqrt{BC^2+BH^2-2BC.BH.cos120^0}=\dfrac{a\sqrt{7}}{2}\)

\(\Rightarrow SH=CH.tan60^0=\dfrac{a\sqrt{21}}{2}\)

\(V=\dfrac{1}{3}SH.2S_{ABD}=\dfrac{1}{3}.\dfrac{a\sqrt{21}}{2}.2.\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^3\sqrt{7}}{8}\)

31 tháng 5 2016

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và SC = 2a√5 .

14 tháng 10 2019