K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2021

a, ^ACB = 900 ( góc nt chắn nửa đường tròn ) 

=> BC vuông AC 

Lại có OM vuông AC ( gt ) => OM // BC 

b, Vì OC = OA = R 

=> tam giác AOC cân, OM vuông AC nên OM đồng thời là đường phân giác 

=> ^AOM = ^MOC 

Xét tam giác AMO và tam giác CMO ta có : 

OA = OC = R 

^AOM = ^MOC ( cmt ) 

OM _ chung 

Vậy tam giác AMO = tam giác CMO ( ch - gn ) 

=> ^MAO = ^MCO = 900 ( 2 góc tương ứng ) 

=> MC là tiếp tuyến (O)

19 tháng 3 2022

19 tháng 3 2022

bài của bn tht hã 

26 tháng 11 2023

a) Tứ giác BDFN nội tiếp nên \(\widehat{CNA}=\widehat{BDF}\) (*)

 Xét đường tròn (K), đường kính BM, ta có \(\widehat{MNB}=90^o\)  hay \(MN\perp AB\) tại N (1)

 Với lí do tương tự, ta có \(AD\perp EB,BC\perp EA\), do đó M là trực tâm của tam giác EAB \(\Rightarrow EM\perp AB\)  (2)

 Từ (1) và (2) \(\Rightarrow\) M, N, P thẳng hàng và đường thẳng này vuông góc với AB.

 Từ đó suy ra tứ giác BECN nội tiếp (vì \(\widehat{ECB}=\widehat{ENB}=90^o\))

 \(\Rightarrow\widehat{CNA}=\widehat{AEB}\) (**)

Từ (*) và (**), suy ra \(\widehat{BDF}=\widehat{BEA}\) \(\Rightarrow\) DF//AE (đpcm)

b) Tương tự như trên, ta có tứ giác AEDN nội tiếp \(\Rightarrow\widehat{BND}=\widehat{AEB}\), dẫn đến \(\Delta BDN~\Delta BAE\left(g.g\right)\) \(\Rightarrow\dfrac{BD}{BA}=\dfrac{BN}{BE}\Rightarrow BD.BE=BA.BN\) (3)

 Tứ giác NBMD nội tiếp nên \(\widehat{ANM}=\widehat{ADB}\), dẫn đến \(\Delta AMN~\Delta ABD\left(g.g\right)\) 

 \(\Rightarrow\dfrac{AM}{AB}=\dfrac{AN}{AD}\Rightarrow AD.AM=AB.AN\)  (4)

Cộng theo vế (3) và (4), thu được \(BD.BE+AM.AD=AB.BN+AB.AN=AB\left(BN+AN\right)=AB^2=4R^2\)không thay đổi. (đpcm)

4 tháng 2 2022

a, Xét (O) có : 

^AMB = 900 ( góc nt chắn nửa đường tròn ) 

=> ^DMA = 900

Xét tứ giác ACMD có : 

^ACD = ^DMA = 900

mà 2 góc này kề nhau, cùng nhìn cạnh AD 

Vậy tứ giác ACMD là tứ giác nt 1 đường tròn 

b, Vì tứ giác ACMD là tứ giác nt 1 đường tròn 

=> ^HNM = ^HDM ( góc nt cùng chắn cung HM ) (1) 

^BNM = ^MAB ( góc nt cùng chắn cung BM ) (2) 

Từ (1) ; (2) => ^HDM = ^MAB 

Xét tam giác CAH và tam giác CDB có : 

^ACH = ^DCB = 900

^CAH = ^CDB ( cmt ) 

Vậy tam giác CAH ~ tam giác CDB (g.g) 

=> CA/CD = CH/BC => AC.BC = CH.CD 

25 tháng 5 2018

bài này đã giải được chưa vậy?

1: góc ACB=góc ADB=1/2*sđ cung AB=90 độ

=>AC vuông góc CB và AD vuông góc DB

=>góc ECM=90 độ=góc EDM

=>CEDM nội tiếp

AC vuông góc CB

AD vuông góc DB

=>AD,BC là 2 đường cao của ΔAEB

=>M là trực tâm

=>AM vuông góc AB

ΔMDB vuông tại D nên ΔMDB nội tiếp đường tròn đường kính MB

=>BM là đường kính của (I)

=>góc MNB=90 độ

=>MN vuông góc AB

=>E,M,N thẳng hàng

b: AM vuông góc AB

=>góc ANM=90 độ

góc ANM+góc ACM=180 độ

=>ACMN nội tiếp

=>góc CAM=góc CNM=góc ADF

=>góc CAM=góc ADF

=>DF//AB

16 tháng 9 2019

Chọn đáp án D

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

* Gọi (O’) là đường tròn đi qua D và tiếp xúc với AB tại B.

Đường tròn (O’) cắt CB tại F khác B. Chứng minh E F   / /   A B .

Ta có:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Hai góc ở vị trí đồng vị  ⇒   E F / / A B