K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2018

Chọn B.

Đặt 

Khi đó, phương trình f( 4 x - x 2 ) =  log 2   m trở thành 

Để phương trình f( 4 x - x 2 ) =  log 2   m  có 4 nghiệm thực phân biệt thì đường thẳng y =  log 2   m  cắt đồ thị hàm số y = f(t) tại hai điểm phân biệt thỏa mãn t < 4.

Suy ra 

Vậy  ( 1 2 ;8).

24 tháng 9 2019

18 tháng 1 2018

Đáp án C

12 tháng 9 2018

Từ bảng biến thiên ta dễ có 1 <m <2 

Chọn đáp án C.

24 tháng 10 2018

Đáp án B

Phương trình f(x) = f(m) có ba nghiệm phân biệt  ⇔ - 2 < f ( m ) < 2 ⇒ - 1 < m < 3 m ≠ 0 ; 2

13 tháng 9 2017

Đáp án D

11 tháng 11 2017

4 tháng 4 2017

Đáp án C

Phương pháp:

Số nghiệm của phương trình f(x) = m bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m

Cách giải:

Số nghiệm của phương trình f(x) = m(*) bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m

⇒ Để (*) có 3 nghiệm thực phân biệt thì m ∈ (-1;3)

17 tháng 4 2018

Đáp án D

Phương pháp:

Đánh giá số nghiệm của phương trình f(x) = m + 1 bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m + 1

Cách giải:

Số  nghiệm của phương trình f(x) = m + 1 bằng số giao điểm của đồ thị hàm số y = f(x)

và đường thẳng y = m + 1

Để f(x) = m + 1 có 3 nghiệm thực phân biệt thì 2 < m+1 < 4 ó3 < m < 3

2 tháng 3 2018