Một hình trụ có bán kính đáy bằng chiều cao và bằng a. Một hình vuông ABCD có AB;CD là 2 dây cung của 2 đường tròn đáy và mặt phẳng (ABCD) không vuông góc với đáy. Diện tích hình vuông đó bằng .
A. 5 a 2 4
B. 5 a 2 2 4
C. 5 a 2
D. 5 a 2 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Phương pháp: Gọi là tâm hình vuông ⇒ I ∈ O O ' .
Sử dụng định lý Py-ta-go trong tam giác vuông để tính AB.
Cách giải:
Ta có: I B = O I 2 + O B 2 = 9 a 2 4 + 9 a 2 = 3 a 5 2
⇒ A B = B I . 2 = 3 a 10 2
Hạ đường sinh AA1 vuông góc với đáy chứa cạnh CD. Khi đó góc ADA1 là góc giữa hai mặt phẳng hình vuông và mặt đáy.
Vì góc A1DC = 1v nên A1C là đường kính.
Gọi cạnh hình vuông là a.
Ta có
a2 = AD2 = AA12 + A1D2
mà AA1 = h = r, nên ta có:
A1D2 + DC2 = A1C2;
a2 – r2 + a2 = 4r2;
⇒a2=52r2
Chọn D.
Phương pháp:
Gọi M;N lần lượt là hình chiếu của A,B trên đáy còn lại không chứa A,B.
Từ đó ta sử dụng định lý Pytago để tìm cạnh của hình vuông
Sử dụng công thức: Diện tích hình vuông cạnh x bằng x2 .
Cách giải:
Xét hình trụ như trên. Gọi cạnh hình vuông ABCD là x ( x > 0)
Gọi M;N lần lượt là hình chiếu của A,B trên đáy còn lại không chứa A,B.
Vì AB / /DC; AB = DC => AB / /MN / /DC; AB = MN = DC hay MNDC là
hình bình hành tâm O’.
Lại có MD = NC = 2a nên MNDC là hình chữ nhật.
Suy ra