tim so n de n2+6n la so nguyen to
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co :\(\frac{6n-3}{3n+1}=\frac{2\left(3n+1\right)-5}{3n+1}=2-\frac{5}{3n+1}\)
De 6n-3/3n+1 la so nguyen \(\Leftrightarrow\)5 chia het cho 3n+1
\(\Leftrightarrow\) 3n+1 \(\in\) U(5)
xong lap bang ra lam tiep nhe
ta có
6N-3 /3N+1=2-5/3N+1
=>ĐỂ 2-5/3N+1 LÀ SỐ NGUYÊN
=>5/3N+1 LÀ SỐ NGUYÊN
=>3N+1 THUỘC Ư 5=1,5
=>3N+1=1=>.....
dễ :D
6n-3/3n+1=6n+2-5/3n+1=2(3n+1)-5/3n+1=2(3n+1)/3n+1+5/3n+1=2+5/3n+1=>3n+1 thuộc Ư(5) mà Ư(5)={1;-1;5;-5}
=> n=0;-2/3( loại) ;4/3( loại); -2
Đặt UCLN(6n+1,2n-1)=d
2n-1 chia het cho d => 6n+1 chia het cho d
[(6n+5) - (6n+3)] chia het cho d
2 chia het cho d nhung 6n+5 va 6n+3 le
=> d=1.
Vậy n=1.
Để \(A=\frac{6n+5}{2n-1}\)có giá trị là số nguyên
\(\Rightarrow6n+5⋮2n-1\)
\(\Rightarrow3\left(2n-1\right)+8⋮2n-1\)
Do \(3\left(2n-1\right)⋮2n-1\)
\(\Leftrightarrow8⋮2n-1\)
\(\Leftrightarrow2n-1\inƯ\left(8\right)\)
\(\Leftrightarrow2n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
Ta có bảng sau:
2n-1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
n | 1 | 0 | 3/2 | -1/2 | 5/2 | -3/2 | 9/2 | -7/2 |
Do n cần tìm là số nguyên
=> n = { 1 ; 0 }
\(\frac{6n+5}{3n-2}\inℤ\Leftrightarrow6n+5⋮3n-2\)
\(\Rightarrow6n-4+9⋮3n-2\)
\(\Rightarrow2\left(3n-2\right)+9⋮3n-2\)
\(2\left(3n-2\right)⋮3n-2\)
\(\Rightarrow9⋮3n-2\)
\(\Rightarrow3n-2\inƯ\left(9\right)\)
\(\Rightarrow3n+2\in\left\{-1;1;-3;3;-9;9\right\}\)
\(\Rightarrow3n\in\left\{-3;-1;-5;1;-11;7\right\}\)
\(\Rightarrow n\in\left\{-1;\frac{-1}{3};\frac{-5}{3};\frac{1}{3};\frac{-11}{3};\frac{7}{3}\right\}\) mà n là số nguyên
\(\Rightarrow n=-1\)
\(E=\frac{6n+5}{3n-2}=\frac{6n-4+9}{3n-2}=2+\frac{9}{3n-2}\)
Để \(E\in Z\Rightarrow\frac{9}{3n-2}\in Z\)
\(\Rightarrow3n-2\inƯ\left(9\right)=\left(1;-1;3;-3;9;-9\right)\)
\(\Rightarrow3n\in\left(3;1;5;-1;11;-7\right)\)
Vì \(n\in Z\Rightarrow3n=3\Leftrightarrow n=1\)
Chăm Học Mỗi Ngày nói đúng đó
Ta có n^2+6n=n.(n+6)
Với n E N thì n+6>1
Do đó n^2+6n là số nguyên tố <=>n=1
Thử lại với n=1 thì n^2+6n=7 là số nguyên tố( thỏa mãn)
Vậy n=1