Cho tam giac ABC ban điểm M,N,P lần lượt thuộc các cạnh BC,CA,ABsao cho \(\frac{BM}{BC}\)\(=\frac{CN}{CA}\)\(=\frac{AP}{AB}\)và BM/BC >1/2. CMR Hai tam giác ABC va MNPcos cùng tronh tâm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(AF^2=AO^2-OF^2;BE^2=BO^2-OE^2,CP^2=CO^2-OP^2\)
\(AP^2=AO^2-OP^2;EC^2=OC^2-OE^2;BF^2=BO^2-OF^2\)
=> \(AF^2+BE^2+CP^2=AO^2-OF^2+BO^2-OE^2+CO^2-OP^2\)
và \(AP^2+EC^2+BF^2=AO^2-OP^2+OC^2-OE^2+BO^2-OF^2\)
=> Đpcm
b) Ta có:
\(AO+OC>AC,OC+OB>AB,OB+OA>AB\)
=> \(AB+AC+BC< 2\left(OA+OB+OC\right)\Rightarrow\frac{AB+AC+BC}{2}< OA+OB+OC\)
Ý còn lại em tự làm nhé!:)