Cho số phức z1, z2 thỏa mãn z 1 = z 2 = 2 5 . Gọi M, N lần lượt là điểm biểu diễn hai số phức z1, z2 trên mặt phẳng tọa độ. Biết M N = 2 2 . Gọi H là đỉnh thứ tư của hình bình hành OMHN và K là trung điểm của OM. Tính l=KH.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Ghi nhớ: Công thức đường trung tuyến:
m a 2 = b 2 + c 2 2 − a 2 4 .
Gọi E là giao điểm của OH và MN.
Ta có:
O E 2 = O M 2 + O N 2 2 − M N 2 4 = 17 − 9 2 = 25 2 ⇒ O H 2 = 50.
H K 2 = H N 2 + H O 2 2 − O N 2 4 = O M 2 + O H 2 2 − O N 2 4 = 17 + 50 2 − 17 4 = 117 4 ⇒ H K = 3 13 2 .
Tập hợp điểm biểu diễn số phức z=x+yi thỏa mãn |z-5-3i|=5 là đường tròn tâm I(5;3) bán kính R=5
Gọi M 1 ( x 1 ; y 1 ) ; M 2 ( x 2 ; y 2 ) là hai điểm biểu diễn các số phức z 1 ; z 2 thì từ z 1 - z 2 = 8 ta suy ra M 1 M 2 = 8
Gọi N(x;y) là điểm biểu diễn số phức w = z 1 + z 2 thì x = x 1 + x 2 y = y 1 + y 2
Gọi M là trung điểm M 1 M 2 thì M x 1 + x 2 2 ; y 1 + y 2 2
Ta có:
hay
Vậy tập hợp các điểm N thỏa mãn bài toán là đường tròn
.
Chọn đáp án A.
Giả sử M, N là điểm biểu diễn số phức z 1 , z 2 theo giả thiết suy ra M, N nằm trên đường tròn tâm I(5;3) bán kính r = 5 và MN là dây cung có độ dài bằng 8. Do đó trung điểm A của MN nằm trên đường tròn tâm I bán kính r' = 3.
Chọn C.
Chọn C.
Phương pháp: Sử dụng phép biến hình.
Cách giải: Giả sử M, N là điểm biểu diễn số phức z 1 , z 2 theo giả thiết suy ra M, N nằm trên đường tròn tâm I(5;3) bán kính r = 5 và MN là dây cung có độ dài bằng 8. Do đó
trung điểm A của MN nằm trên đường tròn tâm I bán kính r' = 3.