Gọi M,m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x 2 - 1 x - 2 trên tập hợp D = ( - ∞ ; - 1 ] ∪ 1 ; 3 2 Khi đó T = m.M bằng
A. 1 9
B. 0
C. 3 2
D. - 3 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Xét hàm số y = x 2 - 1 x - 2 trên D, có f ' x = 1 - 2 x x - 2 2 x 2 - 1 ; ∀ x ∈ D .
Trên khoảng - ∞ ; - 1 ; có f ' x > 0 ⇒ f x là hàm số đồng biến trên - ∞ ; - 1
Trên khoảng 1 ; 3 2 , có f ' x < 0 ⇒ f x f(x) là hàm số nghịch biến trên 1 ; 3 2 .
Dựa vào BBT, suy ra M = f 1 = 0 và m = f 3 2 = - 5 . Vậy P = M.m = 0
Đáp án B
Phương pháp:
Phương pháp tìm GTLN, GTNN của hàm số y = f(x) trên [a;b]
+) Bước 1: Tính y’, giải phương trình y' = 0 ⇒ xi ∈ [a;b]
+) Bước 2: Tính các giá trị f(a); f(b); f(xi)
+) Bước 3:
Chọn B.
Tập xác định:
Bảng biến thiên:
Từ bảng biến thiên suy ra M = 0; m = - 5
Vậy T = m.M = 0