1, Cho 3 số a, b, c trong đó có 2 số nguyên dương và 1 số nguyên âm. Hỏi 3 số đo là loại số nào biết rằng \(\frac{ab}{c^{2016}}=1\)
MỌI NGƯỜI GIÚP MÌNH CẢ CÁCH TRÌNH BÀY NỮA NHÉ. THANK!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ba số có a;b;c có 1 số âm,1 số dương,1số 0 nên ba số này phân biệt .
+)a khác 0 vì nếu a = 0 thì vp = 0 = > hoặc b = 0 hoặc b = c
mà b = 0 thì b = a ( vô lý) b = c cũng vô lí
+) b khác 0 vì nếu b = 0 thì vp = 0 nên vt = 0 hay a = 0
Vô lí vì khi đó a = b = 0
Vậy c = 0
ĐK trở thành \a\=b^2.b = b^3
Vì vt > = 0 ( là biểu thức nằm trong dấu trị tuyệt đối)
Nên vp = b^3 > = 0 => b > = 0
Mà b khác 0 ( vì c = 0 và b khác c) nên b > 0
=> a < 0
Vậy a < 0; b > 0; c = 0.
Cách 2 : Nếu
1/ |a|=b^2(b-c)= 0 <=> a=0; => (b-c)= 0 <=> b = c; loại (không phù hợp với đề bài)
2/ |a|=b^2(b-c)> 0 => a & b khác 0 => c= 0; => b^2(b)>0, mà b^2>0 nên => b>0; => a<0.
+, Nếu a=0 => b=0 hoặc b-c=0 => b=c hoặc b=c ( đều vô lí ) => a khác 0
+, Nếu b = 0 => a = 0 ( vô lí ) => b khác 0
=> c = 0
=> |a| = b^2.b = b^3
=> b^3 >= 0
=> b là số nguyên dương
=> a là số nguyên âm
Vậy a là số nguyên âm , b là số nguyên dương và c = 0
Tk mk nha