chứng minh rằng B=xy(x^2-y^2)(x^2+y^2) chia hết cho 30 với mọi số nguyên x,y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x(x² + x) + x(x + 1)
= x²(x + 1) + x(x + 1)
= (x + 1)(x² + x)
= x(x + 1)² ⋮ (x + 1)
b) xy² - yx² + xy
= xy(y - x + 1) ⋮ xy
Bài 1:
x5y-xy5=xy(x4-y4)=xy(x4-1+y4+1)
=xy(x4-1)-xy(y4-1)=xy(x2-1)(x2+1)-xy(y2-1)(y2+1)
=xy(x-1)(x+1)(x2+1)-xy(y-1)(y+1)(y2-1)
Mà:xy(x-1)(x+1)(x2+1) chia hết 2;3;5
=>xy(x-1)(x+1)(x2+1) chia hết cho 30
Cmtt:xy(y-1)(y+1)(y2+1) chia hết cho 30
Nên x5y-xy5 chia hết cho 30
Bài 2:
x2+y2+z2=y(x+z)
<=>x2+y2+z2-yx-yz=0
<=>2x2+2y2+2z2-2yx-2yz=0
<=>(x – y)2 + (y – z)2 + x2 + z2 = 0
<=>x – y = y – z = x = z = 0
<=>x=y=z=0
b: \(C=xy\left(x^3+2\right)-y\left(xy^3+2x\right)\)
\(=x^4y+2xy-xy^4-2xy\)
\(=xy\left(x^3-y^3\right)\)
\(=xy\left(x-y\right)\left(x^2+xy+y^2\right)⋮x^2+xy+y^2\)
Ta có: x5y-xy5=xy(x4-y4)=xy(x2-y2)(x2+y2)
=xy(x-y)(x+y)(x2+y2)
Ta cần cm bt trên chia hết cho 2,3 và 5
Nếu x,y cùng tính chẵn lẻ thì x-y chẵn=> x5y-xy5 chia hết cho 2 (1)
Nếu x,y không cùng tính chẵn lẻ thi x+y chẵn=>2 (2)
Từ (1) và (2)=> x5y-xy5 chia hết cho 2 với mọi x,y nguyên (13)
Nếu x hoặc y chia hết cho 3=>x5y-xy5 chia hết cho 3 (3)
Nếu x và y chia 3 có cùng số dư thì x-y chia hết cho 3=>x5y-xy5 chia hết cho 3 (4)
Nếu x,y chia 3 không cùng số dư thi x+y chia hết cho 3=>x5y-xy5 chia hết cho 3 (5)
Từ (3),(4) và (5)=>x5y-xy5 chia hết cho 3 với mọi x,y nguyên (14)
Nếu x hoặc y chia hết cho 5 thì x5y-xy5 chia hết cho 5 (6)
Nếu x chia 5 dư 1, y chia 5 dư 2 và ngược lại thì x2+y2 chia hết cho 5
=>x5y-xy5 chia hết cho 5 (7)
Nếu x chia 5 dư 2, y chia 5 dư 3
và ngược lại thì x+y chia hết cho 5
=>x5y-xy5 chia hết cho 5 (8)
Nếu x chia 5 dư 3, y chia 5 dư 4 và ngược lại thì
x2+y2 chia hết cho 5
=>x5y-xy5 chia hết cho 5 (9)
Nếu x chia 5 dư 1, y chia 5 dư 4 và ngược lại thì x+y chia hết cho 5
=>x5y-xy5 chia hết cho 5 (10)
Nếu x chia 5 dư 1, y chia 5 dư 3 và ngược lại thì x2+y2 chia hết cho 5
=>x5y-xy5 chia hết cho 5 (11)
Nếu x chia 5 dư 2, y chia 5 dư 4 và ngược lại thì x2+y2 chia hết cho 5
=>x5y-xy5 chia hết cho 5 (12)
Từ (6),(7),(8),(9),(10),(11)và (12)
=> x5y-xy5 chia hết cho 5 với mọi x,y nguyên (15)
Từ (13),(14) và (15) Mà (3;4;5)=1
=>x5y-xy5 chia hết cho 30 với mọi x,y nguyên
=>đpcm
\(x^3y^2-3x^2y+2y=x^3y^2-x^2y-2x^2y+2y\\ =x^2y\left(xy-1\right)-2y\left(xy-1\right)=\left(xy-1\right)\left(x^2-2y\right)⋮\left(xy-1\right)\)