K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

Chọn A.

Ta có ABCD là hình bình hành => AB//CD

Do đó (SB,CD) = (SB,AB) = SBA

Vì SA ⊥ (ABCD) => SA ⊥ AB =>  ∆ SAB vuông tại A.

Xét tam giác vuông SAB ta có: 

Vậy (SB;CD) = 60 °

29 tháng 6 2018

Đáp án là A

26 tháng 4 2018

Chọn đáp án A

Ta có ABCD là hình bình hành nên CD//AB.

Lại có S A ⊥ A B C D ⇒ S A ⊥ A B

⇒ ∆ S A B vuông tại A.

Suy ra

 

Trong tam giác SAB vuông tại A có

⇒ S B A ⏜ = 60 0

16 tháng 6 2023

 Gọi O là giao điểm của AC và BD. Dễ thấy \(\Delta OAB\) vuông tại O và \(OB=\dfrac{a\sqrt{3}}{2}\). Từ đó \(OA=\sqrt{AB^2-OB^2}=\sqrt{\left(\dfrac{\sqrt{3}}{2}a\right)^2-a^2}=\sqrt{\dfrac{1}{4}a^2}=\dfrac{a}{2}\) \(\Rightarrow AC=a\).

Vì \(SA\perp mp\left(ABCD\right)\) nên \(SA\perp AC\) tại A hay \(\Delta SAC\) vuông tại A. 

Lại có \(\tan SAC=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\) nên \(\widehat{SAC}=60^o\), suy ra góc giữa SC và mp(ABCD) bằng 60o \(\Rightarrow\) Chọn A

 

16 tháng 6 2023

Chỗ \(\widehat{SAC}\) em sửa lại là \(\widehat{SCA}\) mới đúng ạ.

Chọn A

15 tháng 5 2023

Mình cảm ơn 

4 tháng 12 2018

2 tháng 8 2019

Chọn A.

Góc giữa SC và mặt đáy bằng  45 o ⇒ S C A ^ = 45 o

Xét tam giác SAC vuông tại A, ta có

Dựng hình bình hành ACBE

Gọi H là hình chiếu của A lên mặt phẳng (SBE).

Xét hình tứ diện vuông SABE có


26 tháng 3 2017

21 tháng 10 2019

NV
17 tháng 9 2021

\(SA\perp\left(ABCD\right)\Rightarrow\widehat{SMA}\) là góc giữa SM và đáy

\(\Rightarrow\widehat{SMA}=60^0\Rightarrow SA=AM.tan60^0=\sqrt{3a^2+\left(\dfrac{2a}{2}\right)^2}.\sqrt{3}=2a\sqrt{3}\)

Qua B kẻ đường thẳng song song AM cắt AD kéo dài tại E

\(\Rightarrow AM||\left(SBE\right)\Rightarrow d\left(AM;SB\right)=d\left(AM;\left(SBE\right)\right)=d\left(A;\left(SBE\right)\right)\)

Từ A kẻ \(AH\perp BE\) , từ A kẻ \(AK\perp SH\Rightarrow AK=d\left(A;\left(SBE\right)\right)\)

\(\widehat{DAM}=\widehat{AEB}\) (đồng vị) , mà \(\widehat{BAH}=\widehat{AEB}\) (cùng phụ \(\widehat{ABH}\))

\(\Rightarrow\widehat{DAM}=\widehat{BAH}\)

\(\Rightarrow AH=AB.cos\widehat{BAH}=AB.cos\widehat{DAM}=\dfrac{AB.AD}{AM}=\dfrac{2a.a\sqrt{3}}{2a}=a\sqrt{3}\)

\(\dfrac{1}{AK^2}=\dfrac{1}{AH^2}+\dfrac{1}{SA^2}=\dfrac{1}{3a^2}+\dfrac{1}{12a^2}=\dfrac{5}{12a^2}\)

\(\Rightarrow AK=\dfrac{2a\sqrt{15}}{5}\)

NV
17 tháng 9 2021

undefined