Có bao nhiêu giá trị nguyên của m để hàm số y = 3 x + m sin x + cos x + m đồng biến trên R?
A. 3.
B. Vô số.
C. 4.
D. 5.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)
Hàm nghịch biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)
\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)
4.
\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)
Hàm đồng biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)
\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)
Đáp án C
Sử dụng tính đơn điệu của hàm số, đánh giá số nghiệm của phương trình.
Vậy, có 3 giá trị nguyên của m thỏa mãn yêu cầu đề bài.
Vậy có 8 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Đáp án D
Chọn đáp án D
* Với m - 1 = 0 ⇔ m = 1 thì hàm số đã cho trở thành y = x + 1
Hàm số này có đồ thị là một đường thẳng và hàm số luôn đồng biến trên ℝ
* Với m - 1 ≠ 0 ⇔ m ≠ 1 thì hàm số đã cho là một hàm số bậc ba có đạo hàm là
Do phương trình y ' = 0 có nhiều nhất hai nghiệm trên ℝ nên để hàm số đồng biến trên ℝ
Do m ∈ ℤ nên m ∈ 2 ; 3 ; 4
Vậy có 4 giá trị m nguyên để hàm số đã cho đồng biến trên ℝ là m ∈ 1 ; 2 ; 3 ; 4
Chọn D