Cho hàm số y = f(x) có đồ thị y = f’(x) cắt trục Ox tại 3 điểm có hoành độ a<b<c như hình vẽ. Mệnh đề nào dưới đây là đúng
A. f(a)>f(b)>f(c)
B. f(c)>f(b)>f(a)
C. f(c)>f(a)>f(b)
D. f(b)>f(a)>f(c)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Trên khoảng ( a ; b ) và ( c ; + ∞ ) hàm số đồng biến vì y'>0 đồ thị nằm hoàn toàn trên trục Ox
Hàm số nghịch biến trên các khoảng ( - ∞ ; a ) và (b;c) vì y'<0
Suy ra x=b là điểm cực đại mà y(b) <0 do đó trục hoành cắt đồ thị tại hai điểm phân biệt. Với d<0 ta có
+ Ta có y ' = f ' ( x ) = a d - b c ( c x + d ) 2 . Từ đồ thị hàm số y= f’(x) ta thấy:
Đồ thị hàm số y= f’(x) có tiệm cận đứng x=1 nên –d/c= 1 hay c= -d
Đồ thị hàm số y= f’(x ) đi qua điểm (2;2)
⇒ a d - b c ( 2 c + d ) 2 = 2 ↔ a d - b c = 2 ( 2 c + d ) 2
Đồ thị hàm số y= f’(x) đi qua điểm (0;2)
⇒ a d - b c d 2 = 2 ↔ a d - b c = 2 d 2
Đồ thị hàm số y=f(x) đi qua điểm (0;3) nên b/d= 3 hay b= 3d
Giải hệ gồm 4 pt này ta được a=c= -d và b= 3d .
Ta chọn a=c= 1 ; b= -3 ; d= -1
⇒ y = x - 3 x - 1
Chọn D.
Đáp án là D
Từ đồ thị f ’(x) ta lập được BBT của f(x)
=> Có 4 nghiệm là nhiều nhất
Chọn A
Đồ thị của hàm số liên tục trên các đoạn và , lại có là một nguyên hàm của .
Do đó diện tích của hình phẳng giới hạn bởi các đường:
là:
.
Vì
Tương tự: diện tích của hình phẳng
giới hạn bởi các đường: là:
.
.
Mặt khác, dựa vào hình vẽ ta có: .
Từ (1), (2) và (3) ta chọn đáp án A.
( có thể so sánh với dựa vào dấu của trên đoạn và so sánh với dựa vào dấu của trên đoạn )
Đáp án A
Dựa vào đồ thị của hàm số y = f '(x), em suy ra được bảng biến thiên như sau:
Đáp án C
Giả sử
Hoành độ điểm D là nghiệm phương trình:
Hoành độ điểm E là nghiệm của phương trình:
Hoành độ điểm F là nghiệm của phương trình:
Khi đó
Đáp án C
Phương pháp:
+) đồng biến trên (a;b)
+) nghịch biến trên (a;b)
Cách giải:
Quan sát đồ thị của hàm số y = f’(x), ta thấy:
+) đồng biến trên (a;b) => f(a) > f(b)
+) nghịch biến trên (b;c) => f(b)<f(c)
Như vậy, f(a)>f(b), f(c)>f(b)
Đối chiếu với 4 phương án, ta thấy chỉ có phương án C thỏa mãn