Cho hàm số f(x) liên tục trên R và có đồ thị như hình vẽ bên.
Số giá trị nguyên của tham số m để phương trình f x + m = m có đúng 6 nghiệm thực phân biệt là
A. 1.
B. 3.
C. 2.
D. 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có
Phương trình này có hai nghiệm
• Với ta cần tìm điều kiện để phương trình này có 4 nghiệm phân biệt thuộc
Với t = -1 phương trình (1) cho đúng một nghiệm x = π ; với t = 0 phương trình cho hai nghiệm
Với mỗi phương trình cho hai nghiệm thuộc
Vậy điều kiện cần tìm là phương trình (1) phải có hai nghiệm phân biệt
Chọn B.
Chọn đáp án B
Phương pháp
+) Đặt t=cosx, xác định khoảng giá trị của t, khi đó phương trình trở thành f(t)=m.
+) Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y=f(t) và y=m song song với trục hoành.
Cách giải
Đặt t=cosx ta có
Khi đó phương trình trở thành f(t)=m.
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y=f(t) và y=m song song với trục hoành.
Dựa vào đồ thị hàm số y=f(x) ta thấy phương trình f(t)=m có 2 nghiệm phân biệt thuộc [-1;1) khi và chỉ khi mÎ(0;2).
Đáp án D
Phương pháp:
Số nghiệm của phương trình |f(x)| = m bằng số giao điểm của đồ thị hàm số y = |f(x)| và đường thẳng y = m
Cách giải:
Từ đồ thị hàm số y = f(x) ta có đồ thị hàm số y = |f(x)| như hình bên:
Số nghiệm của phương trình |f(x)| = m bằng số giao điểm của đồ thị hàm số y = |f(x)| và đường thẳng y = m
⇒ Để phương trình |f(x)| = m có 4 nghiệm phân biệt thì 1 < m < 3