Cho hàm số y = f x liên tục trên R và có bảng biến thiên như hình vẽ. Tìm tất cả các giá trị thực của m để phương trình f x = 2 m có đúng hai nghiệm phân biệt.
A. m = 0 m < - 3
B. m < - 3
C. m = 0 m < - 3 2
D. m < - 3 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Dựa vào bảng biến thiên, phương trình f x = 2 m có đúng hai nghiệm phân biệt khi 2 m = 0 2 m < − 3 ⇔ m = 0 m < − 3 2
Đáp án C
Dựa vào bảng biến thiên, phương trình f x = 2 m có đúng hai nghiệm phân biệt khi 2 m = 0 2 m < − 3 ⇔ m = 0 m < − 3 2
Chọn C.
Phương pháp: Dựa vào bảng biến thiên để kết luận.
Cách giải: Dựa vào bảng biến thên suy ra để phương trình f(x) = 2m có đúng hai nghiệm phân biệt thì
Chọn đáp án C
Phương pháp
Số nghiệm của phương trình f(x)=m là số giao điểm của đồ thị hàm số y=f(x) và y=m song song với trục hoành.
Cách giải
Ta có:
Số nghiệm của phương trình f(x)=m là số giao điểm của đồ thị hàm số y=f(x) và y=m+1 song song với trục hoành.
Từ BBT ta thấy để phương trình f(x)-1=m có đúng 2 nghiệm thì
Chọn C.
f(x) - 1 = m
Dựa vào bảng biến thiên, để phương trình f(x) - 1 có đúng hai nghiệm thì