Từ các chữ số 0, 1, 2, 3, 5, 8 có thể lập được bao nhiêu số tự nhiên lẻ có bốn chữ số đôi một khác nhau và phải có mặt chữ số 3 ?
A. 36 số
B. 108 số
C. 228 số
D. 144 số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Số các số lẻ có 4 chữ số
Chữ số hàng đơn vị có 3 cách chọn
chữ số hàng nghìn có 4 cách chọn
chữ số hàng trăm và hàng chục có lần lượt 4 và 3 cách chọn
Do đó có: 3.4.4.3 = 144 số
Số các số lẻ có 4 chữ số và không có chữ số 3 là
2.3.2.3 = 36
Vậy có 144 - 36 = 108 số
Đáp án B
Xét các số lẻ có 4 chữ số được lập từ các số trên có: 3.4.4.3 = 144 số
Xét các số lẻ có 4 chữ số được lập từ 4 số trên và không có mặt chữ số 3 có: 2.3.3.2 = 36 số
Do đó có 144 - 36 = 108 thỏa mãn.
Đáp án A
Gọi a 1 a 2 a 3 a 4 ¯ là số lẻ có 4 chữ số khác nhau, với a 1 , a 2 , a 3 , a 4 ∈ { 0 , 1 , 2 , 3 , 5 , 8 } => a4 có 3 cách chọn, a1 có 4 cách chọn, a2 có 4 cách chọn và a3 có 3 cách chọn. Khi đó, có 3.4.4.3 = 144 số thỏa mãn yêu cầu trên.
Gọi b 1 b 2 b 3 b 4 là số lẻ có 4 chữ số khác nhau, với b 1 , b 2 , b 3 , b 4 ∈ 0 ; 1 ; 2 ; 5 ; 8 => b4có 2 cách chọn, b1 có 3 cách chọn, b2 có 3 cách chọn và b3 có 2 cách chọn. Do đó, có 2.3.3.2 = 36 số thỏa mãn yêu cầu trên.
Vậy có tất cả 144 - 36 = 108 số thỏa mãn yêu cầu bài toán.
Đáp án B
Số các số lẻ có 4 chữ số
Chữ số hàng đơn vị có 3 cách chọn, chữ số hàng nghìn có 4 cách chọn, chữ số hàng trăm và hàng chục có lần lượt 4 và 3 cách chọn
Do đó có: 3.4.4.3 = 144 số
Số các số lẻ có 4 chữ số và không có chữ số 3 là 3.4.3 = 36
Vậy có 144 − 36 = 108 số
Đáp án C
Trước tiên ta đếm số các số lẻ có bốn chữ số đôi một khác nhau lập được từ các số đã cho: có 3 cách chọn chữ số hàng đơn vị, có 4 cách chọn chữ số hàng nghìn, có A 4 2 = 6 . 2 cách chọn hai chữ số hàng trăm và hàng chục. Như vậy có 3.4.6.2=144 số như trên.
Tiếp theo ta đếm số các số lẻ có bốn chữ số đôi một khác nhau và không có mặt chữ số 1: Tương tự trường hợp trên, ta được số các số thuộc loại này là: 2.3.3=18.
Vậy số các số tự nhiên lẻ có bốn chữ số đôi một khác nhau mà phải có mặt số 1 là: 144 - 18 = 126
Đáp án A
Trước tiên ta đếm số các số lẻ có bốn chữ số đôi một khác nhau lập được từ các số đã cho: có 3 cách chọn chữ số hàng đơn vị, có 4 cách chọn chữ số hàng nghìn, có . 2 cách chọn hai chữ số hàng trăm và hàng chục. Như vậy có 3.4.6.2=144 số như trên.
Tiếp theo ta đếm số các số lẻ có bốn chữ số đôi một khác nhau và không có mặt chữ số 1: Tương tự trường hợp trên, ta được số các số thuộc loại này là: 2.3.3=18.
Vậy số các số tự nhiên lẻ có bốn chữ số đôi một khác nhau mà phải có mặt số 1 là: 144-18= 126
a. Gọi số đó là \(\overline{ab}\)
a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a)
Theo quy tắc nhân ta có: \(5.5=25\) số
b. Gọi số đó là \(\overline{abc}\)
a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a), c có 4 cách chọn (khác a và b)
Có: \(5.5.4=100\) số
c. Gọi số đó là \(\overline{abcd}\)
Do số chẵn nên d chẵn
- TH1: \(d=0\) (1 cách chọn d)
a có 5 cách chọn (khác d), b có 4 cách chọn (khác a và d), c có 3 cách chọn
\(\Rightarrow1.5.4.3=60\) số
- TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (2 và 4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn (khác a và d), c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Theo quy tắc cộng, có: \(60+96=156\) số thỏa mãn
d.
Gọi số đó là \(\overline{abcde}\)
Số lẻ nên e lẻ \(\Rightarrow\) e có 3 cách chọn (1;3;5)
a có 4 cách chọn (khác 0 và e), b có 4 cách chọn (khác a và e), c có 3 cách, d có 2 cách
\(\Rightarrow3.4.4.3.2=288\) số
Xét hai tập hợp A={0;1;2;3;5;8} và B={0;1;2;5;8}.
● Xét số có bốn chữ số đôi một khác nhau với các chữ ố lấy từ tập A.
Gọi số cần tìm có dạng a b c d ¯ vì a b c d ¯ là số lẻ →d={1;3;5}
Khi đó, d có 3 cách chọn, a có 4 cách chọn, b có 4 cách chọn và c có 3 cách chọn.
Do đó, có 3.4.4.3=144 số thỏa mãn yêu cầu trên.
● Xét số có bốn chữ số đôi một khác nhau với các chữ số lấy từ tập B.
Gọi số cần tìm có dạng a b c d ¯ vì a b c d ¯ là số lẻ →d={1;5}
Khi đó, d có 2 cách chọn, a có 3 cách chọn, b có 3 cách chọn và c có 2 cách chọn.
Do đó, có 2.3.3.2=36 số thỏa mãn yêu cầu trên.
Vậy có tất cả 144-36=108 số cần tìm.
Chọn đáp án B.