Xét các số thực c > b > a > 0 . Cho hàm số y = f x có đạo hàm liên tục trên ℝ và có bảng xét dấu của đạo hàm như hình vẽ. Đặt g x = f x 3 . Số điểm cực trị của hàm số y = g x là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Dựa vào bảng xét dấu ta thấy hàm số đổi dấu qua các điểm x = − 1 , x = 0 , x = 2 , x = 4 nên hàm số có 4 điểm cực trị.
Đáp án D
Dựa vào bảng xét dấu f ' (x) ta có: hàm số f(x) liên tục trên ℝ có 4 điểm x o mà tại đó f ' (x) đổi dấu khi x qua điểm x o . Vậy hàm số đã cho có 4 điểm cực trị
Nhận thấy y' đổi dấu khi qua x = -3 và x = 2 nên hàm số có 2 điểm cực trị. ( x = 1 không phải là điểm cực trị vì y' không đổi dấu khi qua x = 1). Chọn C.
Đáp án D
Dễ thấy
Do f (x) đổi dấu từ âm sang dương khi qua điểm x = 2 nên f (x) đạt cực trị tại x =2
Hàm số f (x) nghịch biến trên do
Đặt
đồng biến trên
Qua điểm x = 0 đạo hàm không đổi dấu nên không thể là điểm cực trị của hàm số.
Chọn đáp án D.