Cho tam giác ABC vuông tại A có BC=2a, AC=a. Quay tam giác này quanh trục AB, ta được một hình nón đỉnh B. Gọi S1 là diện tích toàn phần của hình nón đó và S2 là diện tích mặt cầu có đường kính AB. Khi đó, tỉ số S 1 S 2 là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
(h.2.59) Trong tam giác ABC vuông tại A, ta có:
AC = BC.sin30 ° = a;
AB = BC.cos30 ° = a 3 .
Diện tích toàn phần hình nón là:
S 1 = S xq + S đáy = πRl + πR 2 = πa . 2 a + πa 2 = 3 πa 2
Diện mặt cầu đường kính AB là:
S 2 = πAB 2 = π a 3 2 = 3 πa 2
Từ đó suy ra, tỉ số S 1 / S 2 = 1
Đáp án B
Tam giác ABC vuông tại A có:
sin A B C ⏜ = A C B C ⇒ A C = sin 30 ∘ .2 a = a c os A B C ⏜ = A C B C ⇒ A B = c os 30 ∘ .2 a = a 3 .
Quay Δ A B C quanh trục AB ta được hình nón có bán kính đáy r = A C = a .
=> Diện tích xung quanh hình nón trên là S 1 = π r l = π . a .2 a = 2 π a 2 . Và diện tích mặt cầu đường kính AB là: S 2 = 4 π R 2 = 4 π a 3 2 2 = 3 π a 2 ⇒ S 1 S 2 = 2 π a 2 3 π a 2 = 2 3 .
Vì B A C ^ = 90 o nên BC = 5. Khi đó
S 1 S 2 = π . 4 . 5 π . 3 . 5 = 4 3
Đáp án A
Chọn D.
(h.2.60) Bán kính đáy của hình nón là a, đường sinh của hình nón là 2a.
Do đó, ta có:
S 1 = π Rl = π .a.2a = 2 πa 2 (1)
Mặt cầu có bán kính là a 3 /2, nên ta có:
Từ (1) và (2) suy ra: 2 S 2 = 3 S 1
Đáp án C.
Ta có A M = A B 2 − B C 2 2 = 2 a . Khi quay tam giác quanh trục MA thì ta được hình nón có bán kính r = a , đường cao h = 2 a . Thể tích khối nón là V = 1 3 π r 2 h = 2 3 π a 3 .