K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2016

2x^3+6x^2=x^2+3x

=>2x^3+6x^2-x^2-3x=0

=>2x^3+5x^2-3x=0

=>x(2x^2+5x-3)=0

=>x=0 hoặc 2x^2+5x-3=0

=>x=0  ,       2x^2-x+6x-3=0

=>x=0  ,        x(2x-1)+3(2x-1)=0

=>x=0  ,        (2x-1)(x+3)=0

=>x=0  ,   2x-1=0 hoac x+3=0

=> x=0 ,   x=1/2   ,x=-3

 

24 tháng 1 2016

giải ra giùm cái đy chi tiết vô

18 tháng 10 2021

a: Ta có: \(-\left(-3x^2\right)^3+4x-9-27x^6\)

\(=27x^6-27x^6+4x-9\)

=4x-9

=-1

Câu 6:Thực hiện phép nhân  -2x(x2 + 3x - 4) ta được:A.-2x3 - 6x2 – 8x          B. 2x3 -6x2 – 8x      C. -2x3 - 6x2 + 8x         D. -2x3 + 3x2 -4Câu 7 : Phân tích đa thức x2 + 2xy + y2 – 9z2 thành nhân tử ta được:A. (x+y+3z)(x+y–3z)  B. (x-y+3z)(x+y–3z) C.(x - y +3z)(x - y – 3z)D. (x + y +3z)(x -y – 3z)Câu 8: Phân tích đa thức 27x3 – thành nhân tử ta...
Đọc tiếp

Câu 6:Thực hiện phép nhân  -2x(x2 + 3x - 4) ta được:

A.-2x3 - 6x2 – 8x          B. 2x3 -6x2 – 8x      C. -2x3 - 6x2 + 8x         D. -2x3 + 3x2 -4

Câu 7 : Phân tích đa thức x2 + 2xy + y2 – 9z2 thành nhân tử ta được:

A. (x+y+3z)(x+y–3z)  

B. (x-y+3z)(x+y–3z) 

C.(x - y +3z)(x - y – 3z)

D. (x + y +3z)(x -y – 3z)

Câu 8: Phân tích đa thức 27x3 – thành nhân tử ta được:

A.(3x+)(9x2-x+)  

B.(3x–)(9x2+x+) 

C.(27x–)(9x2+x+) 

 D.(27x+)(9x2+x+)  

Câu 9: Phân tích đa thức x2 + 7x + 12 thành nhân tử ta được:

A. (x - 3)( x + 4 )         B. (x + 3)( x + 4 )         C.(x + 5)( x + 2 )               D. (x -5)( x + 2 )

Câu 10:  Giá trị của biểu thức  (x2 + 4x + 4) tại x = - 2 là:

A. 4                            B. -2                          C. 0                           D. -8                 

2
23 tháng 11 2021

Câu 6:C

Câu 7:A

Câu 9:B

Câu 10:A

23 tháng 11 2021

Câu 6:Thực hiện phép nhân  -2x(x2 + 3x - 4) ta được:

A.-2x- 6x– 8x          B. 2x-6x– 8x      C. -2x- 6x+ 8x         D. -2x+ 3x-4

Câu 7 : Phân tích đa thức x2 + 2xy + y2 – 9z2 thành nhân tử ta được:

A. (x+y+3z)(x+y–3z)  

B. (x-y+3z)(x+y–3z) 

C.(x - y +3z)(x - y – 3z)

D. (x + y +3z)(x -y – 3z)

Câu 9: Phân tích đa thức x2 + 7x + 12 thành nhân tử ta được:

A. (x - 3)( x + 4 )         B. (x + 3)( x + 4 )         C.(x + 5)( x + 2 )               D. (x -5)( x + 2 )

Câu 10:  Giá trị của biểu thức  (x2 + 4x + 4) tại x = - 2 là:

A. 4                            B. -2                          C. 0                           D. -8

Mấy câu còn lại bị lỗi r nhé

5 tháng 8 2019

2x3 + 6x2 = x2 + 3x

⇔ (2x3 + 6x2) – (x2 + 3x) = 0

⇔ 2x2(x + 3) – x(x + 3) = 0

⇔ x(x + 3)(2x – 1) = 0

(Nhân tử chung là x(x + 3))

⇔ x = 0 hoặc x + 3 = 0 hoặc 2x – 1 = 0

+ x + 3 = 0 ⇔ x = -3.

+ 2x – 1 = 0 ⇔ 2x = 1 ⇔ x = 1/2.

Vậy tập nghiệm của phương trình là Giải bài 25 trang 17 SGK Toán 8 Tập 2 | Giải toán lớp 8

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) 6x2 . (2x3 – 3x2 + 5x – 4)

= 6x2 . 2x3 +6x2 . (-3x2) + 6x2 . 5x + 6x2 .(-4)

= 12x5 – 18x4 + 30x3 – 24x2

b) (-1,2x2) . (2,5x4 – 2x3 + x2 – 1,5)

= (-1,2x2) . 2,5x4 + (-1,2x2) . (-2x3) + (-1,2x2) . x2 + (-1,2x2) . (-1,5)

= -3x6 + 2,4x5 – 1,2x4 + 1,8x2

10 tháng 2 2022

a, \(x^4-x^2-2=0\Leftrightarrow x^4-2x^2+x^2-2=0\)

\(\Leftrightarrow x^2\left(x^2-2\right)+\left(x^2-2\right)=0\Leftrightarrow\left(x^2+1>0\right)\left(x^2-2\right)=0\Leftrightarrow x=\pm\sqrt{2}\)

b, \(\Leftrightarrow x^2\left(x^2+2x+1\right)=0\Leftrightarrow x^2\left(x+1\right)^2=0\Leftrightarrow x=0;x=-1\)

c, \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1>0\right)=0\Leftrightarrow x=1\)

d, \(\Leftrightarrow6x^2-3x-4x+2=0\Leftrightarrow\left(3x-2\right)\left(2x-1\right)=0\Leftrightarrow x=\dfrac{2}{3};x=\dfrac{1}{2}\)

10 tháng 2 2022

a) 

/ \(x^4+x^2-2=0\)

\(\Leftrightarrow\left(x^2\right)^2-x^2+2x^2-2=0\\ \Leftrightarrow x^2\left(x^2-1\right)+2\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+2=0\\x+1=0\\x-1-0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

 

a: \(\left(3x-2\right)\left(2x-1\right)-\left(6x^2-3x\right)=0\)

\(\Leftrightarrow6x^2-3x-4x+2-6x^2+3x=0\)

\(\Leftrightarrow-4x=-2\)

hay \(x=\dfrac{1}{2}\)

b: \(x^3-\left(x+1\right)\left(x^2-x+1\right)=x\)

\(\Leftrightarrow x=x^3-x^3-1\)

hay x=-1

a) Ta có: \(x^3+x^2+x+1=0\)

\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)

mà \(x^2+1>0\forall x\)

nên x+1=0

hay x=-1

Vậy: S={-1}

b) Ta có: \(x^3-6x^2+11x-6=0\) 

\(\Leftrightarrow x^3-x^2-5x^2+5x+6x-6=0\)

\(\Leftrightarrow x^2\left(x-1\right)-5x\left(x-1\right)+6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\)

Vậy: S={1;2;3}

c) Ta có: \(x^3-x^2-21x+45=0\)

\(\Leftrightarrow x^3-3x^2+2x^2-6x-15x+45=0\)

\(\Leftrightarrow x^2\left(x-3\right)+2x\left(x-3\right)-15\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+2x-15\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+5x-3x-15\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2\cdot\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

Vậy: S={3;-5}

d) Ta có: \(x^4+2x^3-4x^2-5x-6=0\)

\(\Leftrightarrow x^4-2x^3+4x^3-8x^2+4x^2-8x+3x-6=0\)

\(\Leftrightarrow x^3\left(x-2\right)+4x^2\cdot\left(x-2\right)+4x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+4x^2+4x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+3x^2+x^2+4x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+3\right)+\left(x+1\right)\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)=0\)

mà \(x^2+x+1>0\forall x\)

nên (x-2)(x+3)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Vậy: S={2;-3}

1 tháng 3 2023

`2x^3 +6x^2 =x^2 +3x`

`<=> 2x^3 +6x^2 -x^2 -3x=0`

`<=> 2x^3 +5x^2 -3x=0`

`<=> x(2x^2 +5x-3)=0`

`<=> x(2x^2 +6x-x-3)=0`

`<=> x[2x(x+3)-(x+3)]=0`

`<=> x(2x-1)(x+3)=0`

\(< =>\left[{}\begin{matrix}x=0\\2x-1=0\\x+3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-3\end{matrix}\right.\)

b)

`(2+x)^2 -(2x-5)^2=0`

`<=> (2+x-2x+5)(2+x+2x-5)=0`

`<=> (-x+7)(3x-3)=0`

\(< =>\left[{}\begin{matrix}-x+7=0\\3x-3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)

1 tháng 3 2023

`a) 2x^3 + 6x^2 = x^2 + 3x`

`=> 2x^3 + 6x^2 - x^2 - 3x = 0`

`=> 2x^3 + 5x^2 - 3x = 0`

`=> x(2x^2 + 5x - 3) = 0`

`=> x (2x^2 + 6x - x - 3) = 0`

`=> x [(2x^2 + 6x) - (x+3)] = 0`

`=> x [2x(x+3) - (x+3)] = 0`

`=> x (2x - 1)(x+3) = 0`

`=> x = 0` hoặc `2x - 1 = 0` hoặc `x + 3 = 0`

`=> x = 0` hoặc `x = 1/2` hoặc `x = -3`

`b) (2+x)^2 - (2x-5)^2 = 0`

`=> (2+x+2x-5)(2+x-2x+5) = 0`

`=> (3x - 3)(7-x) = 0`

`=> 3x - 3 = 0` hoặc `7 - x = 0`

`=> x = 1` hoặc `x = 7`

 

15 tháng 12 2021

2)

a)

chiều dài ADN: L=N/2*3.4=5100A

chu kì vòng xoắn: c=N/20=150

b)

Nu loại A chiếm 20%=> A=T=3000.20%=600

từ Nu loại A = 20%=> Nu loại G= 30%=> G=X=900

 số lk H= 2A+3G= 2*600+3*900=3900

15 tháng 12 2021

MONG CHỊ GIẢI CHI TIẾT GIÙM EM ĐK Ạ ><