K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2017

+ Theo tính thuận nghịch của chiều truyền ánh sáng ta có: 

24 tháng 7 2018

Đáp án A

10 tháng 10 2019

Đáp án: A

Ảnh rõ nét trên màn nên ta có: L = d + d’

Theo công thức thấu kính:

Để có ảnh rõ nét trên màn thì (*) có nghiệm:

∆ ≥ 0 ↔ L ≥ 4 f .

7 tháng 8 2019

11 tháng 10 2019

Sơ đồ tạo ảnh:

 

Khoảng cách giữa vật và ảnh qua thấu kính L = |d + d'|

Vì vật thật, ảnh thật nên L = d + d'

Theo giả thiết có hai vị trí cho ảnh rõ nét trên màn. Gọi hai vị trí vật và ảnh tương ứng là 

15 tháng 7 2018

+ Theo tính thuận nghịch của chiều truyền ánh sáng 

 

@ Ta có thể giải cách khác như sau:

 

11 tháng 6 2019

Đáp án A

Đây là bài toán trong đó khoảng cách giữa vật và ảnh thật không đổi bằng D và cùng một thấu kính đặt ở hai vị trí khác nhau. Điều này hoàn toàn khác với bài toán hệ hai thấu kính

Áp dụng nguyên lý thuận nghịch chiều truyền ánh sáng:

Từ công thức  1 f = 1 d + 1 d '  ta thấy: công thức có tính đối xứng đối với d và d'

Vì nếu hoán vị d và d' thì công thức không thay đổi gì cả. Nói cách khác nếu vật cách thấu kính d cho ảnh thấu kính d' thì ngược lại, nếu vật cách thấu kính d' sẽ cho ảnh cách thấu kính là D

Nếu gọi  d 1 ,   d ' 1  tương ứng là khoảng cách vật và ảnh tới thấu kính ở vị trí (1) và d 2 ,   d ' 2  là khoảng cách vật và ảnh tới thấu kính ở vị trí (2) thì ta có mối liên hệ:  d 1 = d ' 2 và  d ' 1 = d 2

Vậy ta có:  d 1 + d ' 1 = D và  d 2 − d 1 = d ' 1 − d 1 = 1

⇒ d 1 = D + 1 2 và  d ' 1 = D − 1 2 ⇒ 1 f = 1 d 1 + 1 d ' 1 = 4 D D 2 − l 2 ⇒ f = D 2 − l 2 4 D    ( 1 )

Biện luận: Từ (1) ta rút ra được  4 D f = D 2 − I 2

⇒ D 2 − 4 D f = l 2 > 0 ⇒ D D − 4 f ⇒ D > 4 f

Vậy muốn có được hai vị trí của thấu kính cho ảnh rõ nét trên màn thì điều kiện là khoảng cách vật – màn phải lớn hớn 4f

Đặc biệt nếu  l = 0 tức là  D = 4 f  thì chỉ có một vị trí của thấu kính cho ảnh rõ nét trên màn E

Áp dụng:  D = 200 c m và  l = 120 c m ⇒ f = 32 c m

3 tháng 2 2018

Chọn đáp án A

Đây là bài toán trong đó khoảng cách giữa vật và ảnh thật không đổi bằng D và cùng một thấu kính đặt ở hai vị trí khác nhau. Điều này hoàn toàn khác với bài toán hệ hai thấu kính

Áp dụng nguyên lý thuận nghịch chiều truyền ánh sáng

Từ công thức 1 f = 1 d + 1 d ' ta thấycông thức có tính đối xứng đối với d và d’. Vì nếu hoán vị d và d’ thì công thức không thay đổi gì cả. Nói cách khác nếu vật cách thấu kính d cho ảnh thấu kính d’ thì ngược lại, nếu vật cách thấu kính d’ sẽ cho ảnh cách thấu kính d

Nếu gọi d 1 ,   d ' 1 tương ứng là khoảng cách vật và ảnh tới thấu kính ở vị trí (1) và d 2 ;   d ’ 2 là khoảng cách vật và ảnh tới thấu kính ở vị trí (2) thì ta có mối liên hệ d 1   =   d ’ 2 và d ' 1   =   d 2

Vậy ta có  d 1 + d ' 1 = D và  d 2 − d 1 = d ' 1 − d 1 = 1

⇒ d 1 = D + 1 2 và  d ' 1 = D − 1 2 ⇒ 1 f = 1 d 1 + 1 d ' 1 = 4 D D 2 − 1 2

⇒ f = D 2 − 1 2 4 D 1

Biện luậnTừ (1) ta rút ra được  4 D f = D 2 − 1 2

⇒ D 2 − 4 D f = l 2 > 0 ⇒ D ( D − 4 f ) > 0 ⇒ D > 4 f

Vậy muốn có được hai vị trí của thấu kính cho ảnh rõ nét trên màn thì điều kiện là khoảng cách vật - màn phải lớn hơn 4f

Đặc biệt nếu l = 0 tức là D = 4f thì chỉ có một vị trí của thấu kính cho ảnh rõ nét trên màn E

Áp dụng  D = 200 c m ; l = 120 c m ⇒ f = 32 c m

30 tháng 6 2019

9 tháng 5 2018

Chọn đáp án C.               

Do tính thuận nghịch của sự truyền tia sáng, do vật kh ta dịch chuyển thấu kính ở khoảng giữa nguồn và màn ảnh luôn có hai vị trí cho ảnh rõ nét trên màn thỏa mãn  

Áp dụng công thức của thấu kính