cho tam giác ABC cuông cân tại A .AC=6cm. Qua A vẽ đường thẳng d nằm ngoài tam giác. Từ BC vẽ BH, CK vuông góc với d. Tính BH2+CK2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{ABH}=\widehat{CAK}\)(cùng phụ với \(\widehat{BAH}\))
Xét \(\Delta ABH\)và \(\Delta CAK\)có :
AH = AK(vì A là trung điểm của HK)
\(\widehat{A}_1=\widehat{A_2}\)(gt)
=> \(\Delta ABH=\Delta CAK\left(ch-gn\right)\)
=> BH = AK(hai cạnh tương ứng)
Do đó : \(BH^2+CK^2=AK^2+CK^2\) (1)
Xét \(\Delta\)vuông ACK,theo định lí Pi - ta - go :
\(AK^2+CK^2=AC^2\) (2)
Từ (1) - (2) suy ra : \(BH^2+CK^2=AC^2\)(hằng số)
Vậy \(BH^2+CK^2\)có giá trị không đổi
a:ΔABH vuông tại H nên \(\widehat{BAH}+\widehat{ABH}=90^0\)(1)
Ta có: \(\widehat{BAH}+\widehat{KAC}+\widehat{BAC}=180^0\)
=>\(\widehat{BAH}+\widehat{KAC}+90^0=180^0\)
=>\(\widehat{BAH}+\widehat{KAC}=90^0\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{ABH}=\widehat{KAC}\)
Xét ΔHAB vuông tại H và ΔKCA vuông tại K có
AB=CA
\(\widehat{ABH}=\widehat{KAC}\)
Do đó: ΔHAB=ΔKCA
=>AH=CK
b: Ta có: ΔHAB=ΔKCA
=>HB=KA
HK=HA+AK
mà AK=HB và HA=CK
nên HK=HB+CK