K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2018

Đáp án C

Gọi H là trung điểm của BC. Ta có:  A H ⊥ B C

Mặt khác  A B C ⊥ B C D ⇒ A H ⊥ B C D

Lại có  A H = a 3 2 ⇒ V = 1 3 A H . S B C D = 1 3 . a 3 2 . a 2 3 4 = a 3 8

14 tháng 12 2018

25 tháng 4 2017

Đáp án C

16 tháng 12 2017

6 tháng 10 2017

Đáp án B

Gọi M là trung điểm của BC khi đó  D M ⊥ B C A M ⊥ B C

Suy ra  B C ⊥ ( D M A ) ⇒ D B C ; A B C ^ = 60 °

Lại có  D M = A M = a 3 2

Dựng  D H ⊥ A M ⇒ D H ⊥ ( A B C )

Khi đó V A B C D = 1 3 D H . S A B C = 1 3 D M . sin 60 ° . a 2 3 4 = a 2 3 16 .

10 tháng 9 2018

Chọn A

Coi như a = 1 . Tam giác ACD vuông tại A nên A D = C D 2 - A C 2 = 1 = A B  cân tại A và tam giác ACD vuông cân tại A. Gọi H, E lần lượt là trung điểm của BD và DC. Ta có A H ⊥ B C D  và C D ⊥ A E . Hơn nữa C D ⊥ A H ⇒ C D ⊥ A H E ⇒ C D ⊥ H E  mà HE song song với BC suy ra BC vuông góc với CD. H là tâm của đường tròn ngoại tiếp tam giác BCD, do đó AH là trục đường tròn này. Trong tam giác AHE dựng đường thẳng qua E vuông góc AE và cắt AH tại điểm I. Do mặt phẳng (AHE) vuông góc với mặt phẳng (ACD) nên d cũng vuông góc với (ACD). Hơn nửa E là tâm của đường tròn ngoại tiếp tam giác ACD suy ra I là tâm của mặt cầu ngoại tiếp tứ diện ABCD.

Ta có A I . A H = A E 2 ⇒ A I = A E 2 A H . Ta có  A E = 1 2 C D = 2 2 ,  H K = 1 2 B C = 1 2   ⇒ A H = 1 2

Vậy  A I = A E 2 A H = 1   ⇒ R = 1 ⇒ V m c = 4 3 πa 3

27 tháng 7 2016
gọi H là trung điểm của BC vì tg BCD đều => DH _|_ BCmà BC lại là gt cua 2 tg BCD va ABC => DH _|_ mp (ABC), DH là đường cao của khối chóp
ban cm AH _|_mp (BCD) tương tự như trên ==> AH_|_DH, hai tg ABC va BCD la 2 tg đều có cạnh Bc chung nên đường cao của chúng bằng nhau=> tg HAD vuông cân tại H ma AD =a => Ah =Dh =sin45*a = a\(\frac{\sqrt{2}}{2}\)
tg đều biết độ dài đường cao => độ dài mỗi cạnh, tu do tinh duoc dt tg ABC va tinh duoc the tich khoi chop
bạn tự vẽ hình và tính nah  
27 tháng 7 2016

hihitks p nha :-)

3 tháng 1 2017

13 tháng 7 2019

Chọn A

Coi như a =1. Tam giác ACD vuông tại A nên A D = C D 2 - A C 2 = 1 = A B ⇒ Δ A B D  cân tại A và tam giác ACD vuông cân tại A. Gọi H, E lần lượt là trung điểm của BD và DC. Ta có A H ⊥ ( B C D )  và C D ⊥ A E . Hơn nữa C D ⊥ A H ⇒ C D ⊥ ( A H E ) ⇒ C D ⊥ H E  mà HE song song với BC suy ra BC vuông góc với CD. H là tâm của đường tròn ngoại tiếp tam giác BCD, do đó AH là trục đường tròn này. Trong tam giác AHE dựng đường thẳng qua E vuông góc AE và cắt AH tại điểm I. Do mặt phẳng (AHE) vuông góc với mặt phẳng (ACD) nên d cũng vuông góc với (ACD). Hơn nửa E là tâm của đường tròn ngoại tiếp tam giác ACD suy ra I là tâm của mặt cầu ngoại tiếp tứ diện ABCD.

Ta có A I . A H = A E 2 ⇒ A I = A E 2 A H . Ta có

A E = 1 2   C D = 2 2 , H K = 1 2   B C = 1 2 ⇒ A H = 1 2  

Vậy A I = A E 2 A H = 1 ⇒ R = 1 ⇒ V m c = 4 3 π

17 tháng 2 2018

Chọn B.

Phương pháp:

Ta xác định tâm mặt cầu ngoại tiếp tứ diện ABCD chính là điểm cách đều bốn đỉnh A, B, C, D.

Dựa vào tính chất tam giác cân, hai tam giác bằng nhau, tỉ số lượng giác để chứng minh các đoạn thẳng bằng nhau từ đó tìm được tâm mặt cầu.

Cách giải:

Các tam giác đều ABC và BCD có cạnh 2

⇒ B D = D C = B C = A B = A C = 2  

Nên tam giác CAD cân tại C và  tam giác BAD cân tại B.

Từ (1) và (2) suy ra tam giác CHB vuông cân tại H có cạnh huyền CB = 2.